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NMR visualization of displacement correlations for flow in porous media
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The temporal correlations of velocities for both water and a water-glycerol mixture flowing through a
random packings of monodisperse spherical particles have been investigated using two-dimensional nuclear
magnetic resonance methods. By combining various flow rates, fluid viscosities, and bead sizes, a wide range
of flow parameters has been covered, the dimensionless Peclet number ranging from 100 to 100 000. The
velocity exchange spectroscopy~VEXSY! technique has been employed to measure the correlation between
velocities during two intervals separated from each other by a mixing timetm . This time is made both large
and small compared with the time constanttc , required for a fluid element possessing the average flow
velocity to cover a distance equal to the characteristic size in the system, the bead diameter. The two-
dimensional conditional probability of displacement resulting from the VEXSY method reveals the existence
of different ‘‘subensembles’’ of molecules, including a slow moving pool whose displacement is dominated by
Brownian motion, an intermediate ensemble whose velocities change little over the mixing time, and a fast
flowing ensemble which loses correlation due to mechanical dispersion. We find that that the approach to
asymptotic dispersion, astc /tm increases, depends strongly on the Peclet number, the deviation of the velocity
autocorrelation function from a monoexponential Ornstein-Uhlenbeck process becoming more pronounced
with increasing Peclet number.

DOI: 10.1103/PhysRevE.66.051203 PACS number~s!: 47.15.2x, 81.05.Rm, 82.56.Fk, 47.80.1v
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INTRODUCTION

The physics of fluid dispersion in porous media provid
an interesting example of processes involving both cohe
and stochastic dynamics in which a crossover between
haviors is marked by characteristic time and length sca
These physical phenomena are important in understandi
range of natural and industrial processes, such as perfusi
biological tissue, transport in geological media@1–3#, two-
phase flow in oil recovery@4,5#, molecular separation usin
chromatographic methods@6–8#, and the behavior of packe
bed reactors@9,10#. Nuclear magnetic resonance~NMR! has
the considerable advantage of being a noninvasive me
providing chemical selectivity and a large spectrum of co
trasting parameters. For many years, NMR pulsed-field g
dient ~PFG! techniques have been a powerful tool for t
investigation of transport processes. Recently, it has b
shown that NMR methods are particularly effective in stud
ing dispersion, especially because the technique allow
well-defined displacement propagator to be measu
@11,12#. Furthermore, because NMR relies on a time
quence of radio-frequency and magnetic field gradient
coding pulses, it is possible to design sequences that pe
the study of the time dependence of displacements. Give
judicious choice of pore dimensions and flow rates, th
time dependencies can encompass the characteristic tim
the fluid to move across one pore. When combined w
spatial localization techniques, NMR imaging allows flo
visualization@13–18#. However, imaging methods general
require a trade-off against other important parameters of
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terest, such as the signal-to-noise ratio, and the minim
period of time over which flow displacements may be o
served. Furthermore, where overall ensemble propertie
the flow field are sought, the need for spatial localization
obviated. Thus, the use of NMR imaging is not always n
essary or optimal, given the specific fluid parameters be
sought.

A number of NMR methods focus particularly on temp
ral characteristics of the velocity field. These include doub
pulsed gradient spin echo NMR in which the velocity au
correlation function is measured directly over times rang
from milliseconds to seconds@19,20#, frequency domain
modulated gradient NMR in which the Fourier transform
the velocity autocorrelation function is measured in the f
quency range of 10 Hz to 10 kHz@21,22#, and velocity ex-
change spectroscopy~VEXSY @23# and its closely related
technique, SERPENT@24,25#! in which temporal correla-
tions in the velocity field are obtained as a two-dimensio
map, the time variable being the so-called ‘‘exchange tim
over which velocity variations are compared, and whose v
ues, like that of double pulsed gradient spin echo NM
range from a few milliseconds to seconds. It has been sh
that in the VEXSY experiment, special NMR pulse s
quences are necessary if the method is to work well ove
wide range of exchange times@26#. In this paper we apply
velocity exchange spectroscopy to a study of dispersive fl
in a model porous medium of randomly packed spheres,
under a wide range of Peclet numbers, bead diameters,
exchange times. We compare the results of our experim
with theoretical predictions of flow through a similar syste
with corresponding fluid motion parameters obtained
computer simulations.

This paper serves three purposes. First we seek to d
onstrate the potential for the NMR VEXSY experiment
©2002 The American Physical Society03-1
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KHRAPITCHEV, STAPF, AND CALLAGHAN PHYSICAL REVIEW E66, 051203 ~2002!
reveal the temporal character of the complex velocity dis
bution associated with fluid dispersion. In doing so we sh
indicate the limitations of the method as well as its particu
strengths. Second, we will show how VEXSY can be used
obtain the two-dimensional conditional probability for di
placements over two separated time intervals. Finally,
will use the method to examine flow behavior in a we
defined system and to investigate the rate of approac
asymptotic behavior.

The conditional probability plots that we show here e
hibit complex structure. While we are unable to provide
detailed quantitative explanation, we find similar structure
numerical simulations performed on a similar theoreti
structure under similar conditions. We are able to draw qu
tative conclusions from our study. In particular, we sh
show that there exists more than one characteristic time
the transition to asymptotic conditions and that these tim
are closely related to details of the steady state velocity s
trum.

DISPERSION IN POROUS MEDIA

In the theory of dispersion, it is customary to define t
fluctuation in the Lagrangian velocity field,u(t)5v(t)2V,
wherev is the local instantaneous velocity andV is an aver-
aged velocity defined byV5 t→`

lim ^v&, where the ensemble
averagê &, is taken over the distribution of velocity field
@27,28# localized in space. Notice that the long-time limit
taken with respect to the correlation time of the veloc
fluctuations@29#. The asymptotic dispersion tensor is th
described by@19#

D* 5 lim
t→`

SE
0

t

^u~t!u~0!&dt, ~1!

whereS(A)5 1
2 (A1AT). ^u(t)u(0)& is the velocity autocor-

relation function.
We will be concerned in this paper with flow in a poro

medium contained within a cylindrical tube of constant cro
section. We denote the component ofv along the direction of
mean flow asv and note that for a porous medium̂v&
5^v tube&/f, where^v tube& is the mean velocity deduced from
the volume flow rate in the absence of the porous med
andf is the porosity of the structure.

Equation ~1! describes the ‘‘asymptotic’’ or long time
scale ‘‘steady state’’ dispersion. The meaning of the lo
time limit is that t must exceed the correlation time of th
velocity fluctuations. Note that the trace of this tensor d
scribes a scalar dispersion coefficient which is simply rela
to the mean-squared displacements via

Tr~D* !5 lim
t→`

1

2

ds2~ t !

dt
, ~2!

where s2(t)5Š@r (t)2^r (t)&#2
‹ is the positional variance

Equation ~2! provides an alternative definition of th
asymptotic dispersion.

At measurement times in the preasymptotic regime,
dispersive behavior is considerably more complex. H
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anomalous dispersion due to heterogeneity of the porous
dium requires a nonlocal formulation in which the nonloc
dispersion tensor is dependent on time interval and displa
ment @27,28#, and given by

D* ~r2r 8,t2t8!5^u~r ,t !P~r ,tur 8,t8!u~r 8,t8!&, ~3!

whereP(r ,tur 8,t8) is a transition probability of a tracer from
r at t to r 8 at t8 and is governed by the microscale advectio
diffusion equation at each point in the medium. The loc
dispersion tensor is obtained from the nonlocal form by
tegrating overr 8 and t8 in Eq. ~3!. Its trace reproduces th
local dispersion coefficient.

In our NMR measurements, we will generally be co
cerned with diagonal elements of the dispersion tenso
which relevant components of velocity are determined by
applied magnetic field gradient direction in a pulsed gradi
spin echo NMR experiment.

A crucial parameter in defining the temporal structure
the velocity field is the correlation timetc corresponding to
the duration of flow around a characteristic length scale.
a medium with pore size or pore spacing given by sized, the
correlation time may be written as

tc5
d

^v&
. ~4!

In this work we shall describe flow in a packed bed of mon
disperse spherical beads, for which we shall taked to be
given by the bead diameter. Note that the timetc is not the
only characteristic time for porous media flow. A longer tim
is defined by the time to flow over the larger length sc
associated with the so-called representative elementary
ume ~REV! @30–32#. The REV is the smallest volume con
taining all morphological features which exist in the poro
medium with their global statistical weighting; its size is o
the order of the longest correlation length, which, in o
case, is determined by the packing inhomogeneity. Furth
more, given the wide distribution of velocities present
porous media flow, the notion of a unique correlation tim
whatever the length scale and mean flow rate, is mislead
and we shall later generalize it by formally introducing
distribution of correlation times,P(tc)

Another time that is important to an understanding of t
process of dispersion is that required to migrate the cha
teristic distance by Brownian motion alone. The definition
two characteristic times leads one to a dimensionless num
that characterizes the flow dynamics, the Peclet number
In a porous medium Pe expresses the ratio of the time ta
to diffuse across a pore to the time taken to flow acros
pore, and is given by

Pe5
l ^v&
D0

, ~5!

whereD0 is the molecular self-diffusion coefficient. In th
case of bead packs it is usual practice@33,34# to take the
characteristic dimensionl as being given by the effective
pore diameter, defined byl 5fdp /(12f). We will assume
this definition of the Peclet number throughout this pape
3-2
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NMR VISUALIZATION OF DISPLACEMENT . . . PHYSICAL REVIEW E 66, 051203 ~2002!
The mechanisms that cause dispersion are often discu
in terms of three principal processes. Mechanical dispers
is due to stochastic variations in velocity induced by adv
tion along tortuous paths and flow bifurcations and scale
the Peclet number Pe. Diffusive~Taylor! dispersion arises
from molecular diffusion across streamlines and scales
Pe2. Holdup dispersion arises from the presence of dead
pores, and scales as Pe lnPe@32–35#.

In the asymptotic regime, where the observation ti
greatly exceeds the longest correlation time,D* is homoge-
neous~spatially independent of length scales exceeding
REV! and stationary~observation time independent!. The di-
mensionless asymptotic dispersionD* /D0 has been ob-
served to follow a universal curve as shown in Fig. 1. F
Pe!1, the microscopic Brownian motion dominatesD* . For
Pe@1 an approximate power law behavior,D* /D0;Pea, is
observed witha;1.2 for flow in packings of spherical par
ticles ~this is also the result of numerical simulations@36#!,
gradually reducing with increasing Pe, indicating superpo
dispersive mechanisms with mechanical dispersion domi
ing at the highest Pe.

In attempting to describe the spatially averaged pre
ymptotic dispersion, we shall adopt a phenomenological
proach by assuming a simple expression for the correla
function ^u(t)u(0)& such as the Ornstein-Uhlenbeck proce
@37#, which takes the exponential, stationary Gauss
Markoff form

^u~ t !u~0!&5^u2&exp~2t/tc!. ~6!

Defining the NMR-measured dispersion coefficient at fin
observation timet in terms of an appropriate time integral o
the diffusion spectrum, this particular correlation functi
yields

D* ~ t !5^u2&tc$11~tc /t !@exp~2t/tc!21#%, ~7!

where ^u2&tc is the asymptotic valueD* . This simple ex-
pression neglects possibilities of dispersion associated w

FIG. 1. Literature data for nondimensionalized longitudin
asymptotic dispersion coefficients versus Peclet number.
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distribution of correlation times, and in particular the long
time associated with the larger length scale of the repres
tative elementary volume.

VELOCITY EXCHANGE SPECTROSCOPY

The elucidation by means of VEXSY, of correlations b
tween particle velocities at two different times separated b
mixing time tm , is based on a double encoding of displac
ments. These encoding steps, in turn, are each brought a
by the application of a pair of magnetic field gradient puls
of identical magnitude but alternating sign. These pulses~de-
noted PFG! are separated by a timeD which we shall refer to
as the velocity encoding time.

The magnetic field experienced by the nuclear spins in
sample can be decomposed into a homogeneous contrib
B05(0,0,B0) and a spatially constant field gradientg
5(]Bz /]x,]Bz /]y,]Bz /]z).

Consequentially, the Larmor precession frequency o
spin species of gyromagnetic ratiog is given by

v~r !52g~ uB0u1g•r ! ~8!

and thus depends linearly on the position of the spins al
the direction of the applied gradientg. If the gradient is
applied in the shape of a short, rectangular pulse of dura
d, the difference inv(r ) becomes effective only duringd
and leads to the accumulation of a phase shift

f i5dv~r i !52g~ uB0u1g•r i ! ~9!

for the spin i being located atr i . If a second pulsed-field
gradient of opposite effective amplitude is applied a tim
interval D later ~see the pulse sequence in Fig. 2~a! @38#!, a
second phase shift is added with a negative weighting,
the total shift for spini will be

f i5gdg•@r i~D!2r i~0!#5gdg•@Ri~D!#, ~10!

where Ri(D)5r i(D)2r i(0) indicates the displacement fo
particle i during the encoding timeD. The reduced total sig-
nal amplitude for the ensemble of spins in the sample@nor-
malized to the signal intensity in the absence of gradie
S(0)] is obtained by summation over all spins, equivalent
the following integral:

E~q!5S~q!/S~0!5E P̄1~R,D!exp@ i2pq•R~D!#dR,

~11!

where the wave vectorq is defined asq5(2p)21gdg. It is
the equivalent to the wave number in scattering experime
and has the dimension of reciprocal length.

The average propagatorP̄1(R,D) is given by

P̄1~R,D!5E r~r0!P~r0ur1 ,D!dr , ~12!

l

3-3
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KHRAPITCHEV, STAPF, AND CALLAGHAN PHYSICAL REVIEW E66, 051203 ~2002!
wherer(r0) is the probability density for starting position
while P(r0ur1 ,D) is the conditional probability for displace
ments fromr0 to r1 in time D @11,12#. The average propaga

tor P̄1(R,D) is obtained directly from Fourier transformatio
of the signal functionE(q) with respect toq. It should be
noted that Eq.~11! and all following Fourier relations are
strictly applicable only if the duration of the gradient pulse
much smaller than the encoding time (d!D) and if velocity
fluctuations duringd remain negligible.

We note further that because the experiment is charac
ized by a simultaneous variation of two opposing gradi
pulses, information about the initial and final position b
comes lost and only the distribution of displacements is
tained. Hence, neitherr(r0) nor the conditional probability
for positions,P(r0ur1 ,D), is accessible. However, the ex
periment can, in principle, be performed in a tw
dimensional way with gradients being varied independen
of each other, avoiding these restrictions at the cost of
creased experimental time@39#.

The methods of measuring displacements by a PFG
can be extended towards a multiple encoding of displa
ments by repeated application of PFG pairs, each of th
adding a further phase shift to the individual spin, which
proportional to its motion during the different encoding i
tervals@40–42#. In particular, a twofold encoding, following
the scheme shown in Figs. 2~b! and 2~c!, measures displace
ments of particles being accumulated during the firstand the
second encoding interval, both of which have been chose
having the same durationD for symmetry reasons. The tota
signal amplitude can now be written as

FIG. 2. ~a! Schematic rf and gradient pulses sequence fo
simple PGSTE NMR experiment in which the gradient pulse a
dg is stepped andz storage is used for the encoding period.~b!
Schematic rf and gradient pulses sequence for a general do
PGSE NMR experiment in which the gradient pulse areasdg and
dg8 are stepped simultaneously in 1D experiments or independe
in the 2D version.~c! The same as for~b!, but z storage is used for
both the encoding and mixing periods.
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E~q!5E E P̄2~R1 ,D;R2 ,D;tm!exp~ i2pq1•R1!

3exp~ i2pq2•R2!dR1dR2 . ~13!

It is important to note thatq1 andq2 may be varied indepen
dently or in unison. The former experiment~VEXSY @23#! is
inherently two-dimensional and reveals the two-dimensio
distribution functionP̄2(R1 ,D;R2 ,D;tm). The latter experi-
ment @double pulsed gradient spin echo~PGSE! NMR
@19,20## is inherently one-dimensional and reveals either
probability distribution of sum displacements~uncompen-
sated case! or the probability distribution of difference dis
placements~compensated case!. These one-dimensional ex
periments have been the subject of other stud
@19,20,43,44#. In this paper we focus on the use of two
dimensional VEXSY.

The two-dimensional distribution function
P̄2(R1 ,D;R2 ,D;tm) represents the two-time probabilit
density of finding displacementsR1 in the first andR2 in the
second encoding interval of durationD, separated by a mix-
ing time tm . If q1 andq2 are varied independently of eac
other, the functionP̄2(R1 ,D;R2 ,D;tm) is obtained from the
signal E(q) after a double Fourier transformation with re
spect toq1 andq2 . P̄2(R1 ,D;R2 ,D;tm) can be decompose
as

P̄2~R1 ,D;R2 ,D;tm!5 P̄1~R1 ,D!PV~R1 ,DuR2 ,D;tm!,
~14!

where P̄1(R1 ,D) is the propagator during the first interva
~which must be identical to the propagator in the seco
interval because of the time-invariance condition!, and
PV(R1 ,DuR2 ,D;tm) is the conditional probability that if a
displacement byR1 occurs during the first intervalD, then a
displacementR2 will occur during the third time interval of
equal duration to the first, delayed by a mixing timetm . This
particular nomenclature has been chosen to emphasize
PV describes the conditional probability betweendisplace-
mentsin the VEXSY case, as compared toP(r0ur1 ,t), which
relatespositionsat times separated byt. The subscriptV is
used because displacement and velocity are simply rel
via the encoding timeD. For convenience, we will abbreviat
the functionP̄2(R1 ,D;R2 ,D;tm) as P̄2(R1 ,R2 ;tm), where
it is understood that the displacementsR1 , R2 are measured
during two intervals each of durationD. A more detailed
discussion of the formalism involved in the VEXSY expe
ment can be found in Ref.@25#.

Note that unlike Eq. ~12!, which defines the one
dimensional propagatorP̄1(R,D), Eq. ~14! involves no inte-
gration, and, in consequence, the conditional probability
be obtained directly from a division ofP̄2(R1 ,R2 ;tm) by
P̄1(R1 ,D). It will be shown in the Results section that a pl
of this conditional probability provides considerable insig
into the correlation between velocities and can aid in
visualization of the relationships between initial and fin
velocity distributions.
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NMR VISUALIZATION OF DISPLACEMENT . . . PHYSICAL REVIEW E 66, 051203 ~2002!
It should be mentioned that, while the presentation of
results either as displacements or~via scaling with the en-
coding timeD! as velocities is formally equivalent, som
care has to be taken regarding the interpretation of the la
If particle velocities fluctuate duringD, either by contribu-
tions from random self-diffusion or dispersion due to t
flow process itself, then the VEXSY experiment compa
velocities that are already averaged over a finite time sc
The consequences of such averaging are discussed in
@40#. For the purposes of the present work, the encod
timesD have been chosen as short as practically possib

DISPERSIVE LENGTH AND TIME SCALES RELEVANT
TO THE NMR METHOD

In a two-dimensional exchange experiment, parame
measured at two different times separated by an exchang~or
mixing! time are plotted in a two-dimensional graph. Dia
onal intensity in such a graph represents spins whose pa
eters have remained unchanged over the mixing time, w
off-diagonal intensity represents spins whose parame
have altered. It is of interest in the present context to und
stand how some simple limiting cases apply in the VEXS
experiment. In particular, we will consider the circumstanc
under which a purely diagonal spectrum might be obtain
In principle, we can always achieve this by setting the m
ing time to zero. However, as discussed above, there d
exist a finite encoding timeD for the displacement in eac
interval. The limiting case of a diagonal spectrum requi
not only tm!tc but alsoD!tc . Here we discuss the feas
bility of achieving such a limit.

Consider first the case of Brownian motion in the abse
of flow. The Brownian correlation time~the molecular colli-
sion time! is much shorter than any encoding timeD acces-
sible by NMR, the latter being on the order of or greater th
a few milliseconds. Thus the VEXSY spectrum compa
two completely uncorrelated displacements and consist
the simple product of one-dimensional displacement dis
butions, a two-dimensional Gaussian. By contrast, cons
the case of flow in a pipe involving a fluid. Here the molec
lar collision time remains as a fast correlation time but it
possible to imagine an experiment in which the displa
ments due to flow greatly exceed those due to Brown
motion. Now, however, molecules diffusing across strea
lines leads to~Taylor! dispersion, for which the characterist
correlation timetc is the time to diffuse across the pip
a2/D0 , wherea is the pipe diameter andD0 is the molecular
self-diffusion coefficient. Thistc is on the order of hours fo
flowing water in capillaries of a few millimeters in diamete
It is therefore possible to perform an experiment in which
mixing time is much less thantc and for which the stream
line displacementsvD greatly exceed the Brownian displac
ments (2D0D)1/2. Thus, a diagonal VEXSY plot is possible

In porous media a much more subtle behavior applies.
us once again allow that the mixing time is set to zero a
that the condition for observing purely coherent flow is go
erned by the requirementD!tc , where nowtc5d/^v&. In
this limit we shall refer to the displacements^v&D due to
flow asZflow . This quantity can be made dimensionless in
05120
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number of ways. For the purposes of the present argum
we shall find it convenient to do it in terms of the leng
scaleD0D/d as

zflow5Zflowd/D0D ~15!

'Pe ~16!

The dispersive~incoherent! displacements are given b
@2D* (D)D#1/2, whereD* (D) is the general time dependen
dispersion~which at low Peclet number limit corresponds
molecular self-diffusion alone!. Again, expressing the nondi
mensional dispersive displacement in terms of the len
scaleD0D/d, we find

zdisp5@2D* ~D!D#1/2d/D0D. ~17!

We now evaluateD* (D). In doing so we choose to represe
the universal asymptotic curve of Fig. 1 found from expe
ments on random bead packs by the relation

D* ~`!'D01D0f ~Pe!, ~18!

where f (Pe) is dimensionless quantity on the order of Pea.
Assuming for convenience the exponential form for the c
relation function, we can thus write the time dependent d
persion as

D* ~D!'D01D0f ~Pe$11~tc /D!@exp~2D/tc!21#%.
~19!

Figure 3 compares the dimensionless flow displacement,
persive displacement, and ratiotc /D as a function of Pe.
Curves for two representative examples of diffusion coe
cient and bead size relevant to our work are shown. T
coherent and asymptotic regimes are indicated where the
tical line represents theD;tc crossover at Pe;d2/D0D. In
the ‘‘coherent’’ regime whereD!tc we may evaluate Eq
~19! to second order to find

D* ~D!'D0@11 f ~Pe!~D/2tc!#. ~20!

Given tc5d2/PeD0 and combining Eqs.~17! and ~20!, we
find

zdisp'@2~tc /D!Pe1Pea11#1/2. ~21!

Within the range of Peclet numbers used in this studya
>1. Consequently the stochastic~dispersive! displacements
always exceed the coherent~flow! displacements in the re
gime where coherent flow exists (tc /D@1), irrespective of
the parametersd, D0 , or D. For this reason a strongly diag
onal VEXSY plot is not observable in the case of poro
medium dispersion for the range of Peclet numbers used
(Pe<105).

EXPERIMENTAL AND COMPUTATIONAL METHODS

The experiments were performed on fluid passing throu
a porous medium comprising randomly packed spher
beads. In separate experiments, three different sizes of b
were used, the respective diameters being 100, 400, and
3-5
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KHRAPITCHEV, STAPF, AND CALLAGHAN PHYSICAL REVIEW E66, 051203 ~2002!
mm. The 100- and 500-mm diameter beads were made fro
polystyrene and specified by the company~DUKE Scientific,
Palo Alto, U.S.! to be monodisperse within a tolerance
2.0%. Additional experiments were performed employi
glass beads with a diameter of (400650) mm. Different
containers were used for the differing bead sizes. For
100-mm-diameter beads, a Teflon 2-mm-inner-diameter tu
was used. To prevent a removal of the beads due to flow,
cotton wool plugs were instated at both ends of the pack
For the 400- and 500-mm diameter beads a poly~ether ether
ketone! cylindrical container with an inner diameter of 1
mm and a length of 40 mm was used. In this latter arran
ment, the sample was confined between plugs made f
porous polystyrene. These plugs also acted as a diffu
helping provide an even distribution of streamlines at
inlet and avoiding a holdup of fluid at the outflow. The p
rosities of the packings were determined to be 45%
weighting the sample before and after the addition of wa
Samples were prepared by adding a mixture of liquid a
beads to the liquid-filled container, the packing being re

FIG. 3. Nondimensionalized displacements arising from fl
and from dispersion versus Peclet number. Two examples
shown for bead sizes and molecular diffusion coefficients use
this work. To observe a diagonal VEXSY plot, complete cohere
is required. This implies that bothD and that steady state flow
displacements exceed the stochastic dispersive displacements
figure indicates that this condition is impossible to fulfill at Pe v
ues used in this work.
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larly stirred to avoid trapping of air bubbles. Finally the co
tainers were connected to a pump~Pharmacia 500, Pharma
cia Biotech or BVP-Z, Ismatec! with a 2-mm-inner-diameter
Teflon tube. To avoid pulsations of the liquid column, whi
can be introduced by the pump mechanism, a special
reservoir was installed on the inlet part of the tube. T
reservoir, which acted as a pressure buffer, was kept un
nitrogen atmosphere to prevent dissolution of oxygen i
the liquids.

Two different liquids were investigated, bidistilled wate
and a 70 wt. % solution of glycerol. These two liquids we
chosen to have self-diffusion coefficientsD0 differing by one
order of magnitude (D052.131029 m2/s for water and 2.3
310210 m2/s for glycerol solution at room temperature!.
The liquids were pumped with various flow rates between
ml/h up to 10 l/h, corresponding to interstitial velocitie
ranging from 2 mm/s upto 20 mm/s for the 100-mm bead
pack~small sample! and from 4 mm/s up to 80 mm/s for th
400- and 500-mm packs~large sample!.

The NMR experiments were performed on an AMX 30
MHz Bruker spectrometer equipped with a vertical wide bo
7-T magnet. Two different gradient systems were used
the small and the large samples. For the larger samp
commercial Bruker gradient system with a maximum gra
ent strength of 1.6 T/m was employed. Experiments for
sample containing the smallest beads were performed wi
homemade gradient system with 8 T/m gradient stren
available.

One-dimensional pulsed gradient stimulated-echo~PG-
STE! experiments were performed with the pulse seque
shown in Fig. 2~a!. In order to allow for a wider range o
encoding timesD, the stimulated-echo method was used.
this method the magnetization is stored along thez direction
~parallel to the main magnetic field component! between the
second and third 90° pulses, where it is not subject
dephasing, and signal loss occurs due to longitudinal re
ation alone. The duration of the gradient pulses,d, was typi-
cally 0.25 ms. For the two-dimensional VEXSY expe
ments, the stimulated-echo version of the pulse scheme
been used as well@see Fig. 2~c!# with similar gradient dura-
tion timesd and encoding timesD chosen appropriately to
provide a complete dephasing of the signal intensity at
highest gradient strength.

In order to simulate flow through a model porous m
dium, a packing of spherical particles of identical sizes w
computer generated. This pack had a porosity of 44%, c
sisting ofNC

3 elementary cubes withNC564, where the bead
diameter was chosen as 300mm. Both porosity and sphere
size were matched to real samples of glass bead packing
which experiments with water flow had been performed p
viously @24,45,46#. Their properties match those of th
samples used in the experimental part of this study reas
ably well. To generate an adequate representation of the
porous medium, the random sphere packing has been s
lated by successive deposition of grains in a ‘‘gravitationa
field. TheNth grain is introduced at a random location abo
the bed ofN21 grains already deposited and is allowed
fall until it reaches a local minimum of its potential energ
The matrix possessed periodic boundary conditions. A m
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e
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detailed description of the deposition process is found in R
@47#.

In the following step, the three-dimensional velocity fie
was computed for each position in the pore matrix. For
incompressible Newtonian fluid at low Reynolds numbe
flow is governed by the usual Stokes equations

“p5m¹2v, “•v50, ~22!

wherev, p, andm are the velocity, pressure, and viscosity
the fluid, respectively, andv50 on the surface of the wette
solid. The symmetric permeability tensorK only depends on
the geometry of the system and describes the relation
tween the macroscopic pressure gradient“p and the seepag
velocity ^v&:

^v&52
1

m
K“p. ~23!

The numerical method used to solve these equations is
lined in Ref.@48#. It assumes low Reynolds numbers whi
are guaranteed by the conditions employed in this study:
flow field was computed for average velocities of 2.35 a
4.7 mm/s, respectively, corresponding to Re50.7 and 1.4.
More important, however, is the relative weight of conve
tive and diffusive displacements to the total particle motio
which is expressed by the dimensionless Peclet number@see
Eq. ~5!#. It was shown@35# that these simulations were rel
able for Peclet numbers smaller than 1000. In the case g
above, one computes Pe5270 and 540.

In the final step, 100 000 particles were distributed eve
in the pore space and were allowed to follow the flow lin
and undergo random self-diffusion jumps, where wall co
sions were taken into account by accumulating individ
time lags to each particle, which were then recovered
regular intervals. The displacementsZ parallel to the main
flow direction were saved periodically and served for t
visualization of the two-dimensional~2D! probability func-
tions and the computation of the correlation coefficients.

The simulation methods have been discussed in gre
detail and compared to experimentally obtained propaga
in @45,49#. A similar set of simulated data for flow throug
bead packings, in particular, addressing the topic of spa
correlations between displacements in orthogonal direct
at identical times, was already presented in previous w
@24,45#. The results from numerical simulations, which a
presented in this work with the purpose of supplying a co
parison with experimental data, will be covered more ext
sively in Ref.@40#.

RESULTS AND DISCUSSION

One-dimensional propagators

In the idealized case, the VEXSY experiment compa
velocity distribution functions which were obtained at tw
different time points. In reality, the encoding takes place o
an intervalD during which a certain averaging of partic
velocities occurs. The desired time scale is determined
two limiting conditions. First, we wish to makeD long
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enough that the influence of microscopic Brownian motion
minimized. To ensure that the displacement due to fl
dominates the rms displacement due to Brownian motion,
require

^v&D@A2D0D or D@
2D0

^v&2 . ~24!

For the smallest average velocities used in this study
mm/s, this condition puts a lower limit of'1 ms for the
encoding timeD. Higher velocities allow still smaller encod
ing times if we are to meet this condition. On the other ha
the maximum gradient strength available makesD values of
less than 1 ms unfeasible, so that the above condition for
lower limit of D is fulfilled under all circumstances reporte
here.

Second, we wish to makeD short enough that the flow
velocity is approximately constant over the encoding tim
This allows us to use theexchange timebetween the two
encodings,tm , to investigate velocity fluctuations. This con
dition implies that the encoding time be much less than
correlation time,D!tc .

In order to demonstrate the influence of differentD on the
shape of the velocity distribution function, we present as
example in Fig. 4 a series of one-dimensional propagato
P̄1(Z,D), whereZ indicates displacements along the axis
the main flow direction, being encoded by a pulsed gradi
in the same direction, whose corresponding wave numbe
denote asqz . The propagators were obtained employing t
conventional PGSTE pulse sequence shown in Fig. 2~a!. Fig-
ure 4 was obtained with beads of 500mm diameter at a
volume flow rate of 3.0 l/h, corresponding to an avera
velocity of 24 mm/s and Pe55600. The correlation time un
der these conditions istc521 ms. The velocity distribution
function, which is equivalent to the propagator of displac
ments (Z5vD), shows a sharp peak at small velocities an
long tail of large velocities for the shortest encoding time

FIG. 4. One-dimensional propagatorsP̄1(Z,D) for flow of water
in packed beads of 500mm diameter at a volume flow rate of 3.
l/h, corresponding to an average velocity of 24 mm/s,tc521 ms,
and Pe55600. The propagators were obtained with encoding tim
D varied as indicated, employing the double-PGSE pulse sequ
shown in Fig. 3~a!.
3-7
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KHRAPITCHEV, STAPF, AND CALLAGHAN PHYSICAL REVIEW E66, 051203 ~2002!
D510 ms. This behavior has been observed before@50–52#
and has been well represented by an exponentially deca
velocity distribution function. It describes a situation whe
each particle remains essentially within the same stream
during the encoding (D,tc), so that the statistics of dis
placements of the ensemble of flowing molecules can be
garded as being equivalent to the true properties of the
locity field.

With increasing encoding time, the particles mix betwe
streamlines, this mixing process being dominated by the
fluence of mechanical dispersion. As a consequence of
mixing, the velocity distribution function of the particles b
comes smoothed over the intervalD. The effect of this aver-
aging process is already visible forD/tc51.1. ForD@tc ,
the distribution is approximately Gaussian and is centere
the average interstitial velocity,̂v&528 mm/s. A small
‘‘hump’’ representing ‘‘slow’’ spins remains even atD
5300 ms. The origin of this hump is a small fraction
molecules, which remains trapped in quasistatic regi
without having mixed into the main streamlines duringD.
This behavior is in perfect agreement with propagators
ported in the literature@53–55#, and is reasonably well un
derstood. In the limitD→`, the propagator is expected to b
of perfect Gaussian shape, representing the case when
spin has sampled all velocities with an equal statistical pr
ability irrespective of its starting position or initial velocity
This is the asymptotic region of longitudinal dispersion@56–
58#. It has been shown that the intensity of the low-veloc
peak as a function ofD is a measure of the connectivity o
the pore space@6,52,59#, and it has been observed for time
much exceedingD5tc for systems with low porosity and
connectivity@46#.

In order to compare the instantaneous velocity distri
tions at two different times, it becomes obvious from t
results of Fig. 4 that the encoding timeD has to be chosen a
short as possible, provided of course thatD^v&@(2D0D)1/2

is still fulfilled.
One way to indirectly observe the change of velocit

during a given period is realized by a repeated encoding
displacements in two identical intervalsD, which are sepa-
rated by a mixing timetm . This is essentially a one
dimensional realization of the VEXSY experiment@see Figs.
2~b! and 2~c!#, where both gradient pairs are varied simul
neously. Two versions are possible, one in which the grad
pairs have the same effective amplitude~uncompensated
double PGSE! and one in which the gradient pairs have t
opposite effective amplitude~compensated double PGSE!.
On Fourier transformation of this doubly encoded sig
with respect to the wave vectorqz , the former returns the
total displacement from each intervalD, from which the av-
erage velocity distribution may be computed, while the lat
yields the difference in displacement from each interval. F
ure 5 shows the distribution of average velocities obtain
using gradients of the same effective amplitude~uncompen-
sated double PGSE for a range of mixing times,tm). For a
vanishing mixing time, this function is essentially unchang
compared to the single-encoding case shown in Fig. 4. W
the chosen parameter ofD55 ms for the uncompensate
double-PGSE experiment, the result is equivalent to
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single-PGSE experiment with a twice larger encoding ti
of D510 ms. The effective time over which velocit
changes are measured is denoted bytm8 5D1tm , and the
reduced quantitytm8 /tc is used as a parameter in this and t
following figures.

As tm8 increases, the velocities of the individual fluid el
ments during the first and second encoding interval beco
more and more uncorrelated. In the limit of infinitetm8 , the
signal function can be split into a product of two individu
propagators:

E~qz!5E E P̄2~Z1 ,Z2 ;tm8 !exp@ i2pqz~Z11Z2!#dZ1dZ2

5F E P̄1~Z,D!exp~ i2pqzZ!dZG2

, ~25!

so that the Fourier transformation ofE(qz) with respect toqz
produces the autocorrelation function of the one-dimensio
propagatorP̄1(Z,D).

This one-dimensional double-PGSE experiment is sho
for demonstration only. It does not give direct insight into t
change of velocities, neither does it allow one to investig
the behavior of particular subsets of fluid elements in su
cient detail. By contrast, the use of the compensated dou
PGSE experiment does reveal changes in velocity, and s
an approach has been employed in previous work@19,20#.
However, the use of the two-dimensional VEXSY expe
ment allows a more detailed analysis of the changes in
velocity field in which specific correlations in displacemen
between the two encoding intervals are revealed.

Characteristics of VEXSY propagators

Figure 6~a! demonstrates the evolution of the two-tim
joint probability density of velocities,P̄2(Z1 ,Z2 ;tm8 ). This

FIG. 5. One-dimensional propagatorsP̄1(Z,D) for flow of water
in packed beads of 500mm diameter at a volume flow rate of 3.
l/h, corresponding to an average velocity of 24 mm/s,tc521 ms,
and Pe55600. The propagators were obtained with an encod
time of D55 ms employing the double-PGSE pulse seque
shown in Fig. 3~c!. The mixing timetm has been varied as indi
cated.
3-8
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FIG. 6. ~a! Two-time joint probability density of velocities,P̄2(Z1 ,Z2 ;tm), for water flowing through packed beads of 500mm diameter
obtained by the VEXSY experiment as shown in Fig. 3~c!. The parameters of the experiments were flow rateQ51.0 l/h, average velocity
^v&57.9 mm/s, corresponding totc564 ms and Pe51900; the encoding time isD512 ms. Velocities measured before and after the mix
intervaltm are shown along the abscissa and ordinate axes, respectively. Numbers indicate velocities in mm/s. Contour lines are i
10% where the peak amplitude is normalized to unity.~b! As in Fig. 6~a! but with the data plotted as the conditional probabil
PV(Z1 ,DuZ2 ,D;tm).
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plot was obtained by using the VEXSY experiment as sho
in Figs. 2~b! and 2~c! in which the amplitudes of both grad
ent pairs were varied independently of each other, follow
which the signal was subjected to a two-dimensional Fou
transformation with respect to$qz1 ,qz2%. Here and in all
following experiments, only displacements parallel to t
axial flow direction~Z! have been measured. The paramet
of the experiments were the flow rateQ51.0 l/h, average
velocity ^v&57.9 mm/s, bead sized5500mm, correspond-
ing to Pe51900. The correlation time computed for the
conditions istc564 ms. The mixing times used in the e
periment cover the rangetm8 !tc to tm8 @tc. Note that in this
and all subsequent plots the ordinate and abscissa axes
velocity rather than displacement units. Conversion betw
displacement and velocity may be simply made via the
coding timeD.
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For a negligible mixing time, the velocity distribution i
expected not to change between the first and the second
coding interval. The plot in the upper left corner of Fig. 6~a!
shows this situation fortm8 513 ms. The distribution is plot-
ted with initial velocities along the horizontal axis, and fin
velocities along the vertical. Intensities along the main dia
onal correspond to spins that have not changed their velo
during tm8 , while off-diagonal intensities represent veloci
changes. Here and in all following figures, the two-tim
probability density functionP̄2(Z1 ,Z2 ;tm8 ) is plotted as con-
tour lines in steps of 10% where the peak amplitude is n
malized to unity. The plot for the shortest mixing times
characterized by a strong alignment along the main diago
indicating that the majority of spins have maintained th
initial velocity or have changed it by a relatively sma
amount. In fact, the broadening of the distribution function
3-9
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KHRAPITCHEV, STAPF, AND CALLAGHAN PHYSICAL REVIEW E66, 051203 ~2002!
dominated by the averaging process taking place durinD
becauseD.tm8 . As explained in the preceding section,
perfectly diagonal VEXSY plot is not observable in flo
through bead packs for the range of Peclet numbers use
this work. The functionP̄2(Z1 ,Z2 ;tm8 ) therefore does no
assume the shape of ad distribution as would be expected fo
a vanishing mixing time, but retains a finite broadeni
which represents the highest degree of correlation obt
able.

When tm8 is increased, a further broadening of the fun

tion P̄2(Z1 ,Z2 ;D) is observed. The probability of a chang
of velocities for a given fluid element grows with longertm8 .
In the third frame,tm8 ;tc and one finds a larger probabilit
of velocity changes. For example, the probability of finding
spin with a large velocity in the first encoding intervalanda
small velocity in the second interval is increased as co
pared to the situation in the first frame. The loss of corre
tion, however, is not yet complete attm8 ;tc . At long tm8 the

shape of the functionP̄2(Z1 ,Z2 ;tm8 ) tends to become trian
gular, with the outer contour lines being oriented parallel
the secondary diagonal in the plot. The latter effect sugg
a constant probability of finding spins with equal avera
velocity, equivalent to a constant total displacement dur
both intervals,Z11Z2 . This requires a negative correlatio
between displacementsZ1 andZ2 at least for those particle
that have traveled the longest accumulated distances. In o
words there is a tendency for a smallZ1 to be observed along
with a largeZ2 , and vice versa, a strange result given th
one would expect a complete loss of correlation for mixi
times much longer than the correlation time. This appare
unphysical observation could arise from inflow/outflow e
fects as discussed further in the Appendix.

The interpretation of the dependence between initial
final velocity distributions can be facilitated by employin
the conditional probabilityPV(Z1 ,DuZ2 ,D;tm8 ) as defined in
Eq. ~14!. It is simply obtained in practice by dividing
the joint probability density function P̄2(Z1 ,Z2 ;tm8 )

by the one-time propagator P̄1(Z,D), which is
the marginal of P̄2(Z1 ,Z2 ;tm8 ), i.e., the integral

* P̄2(Z1 ,Z2 ;tm8 )dZ2 . PV(Z1 ,DuZ2 ,D;tm8 ) is still a two-
dimensional quantity, and the plots obtained from t
VEXSY results of Fig. 6~a! are shown in Fig. 6~b!. The
shape of the conditional probability describes the probab
of finding a velocityv2 in the second encoding intervalgiven
that a velocityv1 was observed in the first interval. It can b
seen that for the shortest mixing time, a strong correlat
betweenv1 andv2 exists, as expressed by the probability
finding v2 being shifted towards higher velocities at increa
ing v1 . Throughout the function, a positive slope of arou
unity is found, i.e., the pattern of contour lines is align
approximately along the main diagonal. Note that forv1
50, the distribution ofv2 remains very narrow and is cen
tered about a small positive value, as a change of veloc
will most likely be associated with a positive~‘‘down-
stream’’! motion of the fluid elements. This is corroborate
by the one-dimensional propagators shown in Fig. 4, wh
negative displacements, arising from the combined effec
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backflow and random diffusive contributions antiparallel
the main axial flow direction, remain very small.

With growing mixing time, the fluid elements are allowe
to sample a wider range of streamlines and the different c
ponents of dispersion lead to a loss of memory, so that
conditional probability ofv2 becomes gradually less depe
dent on the initial valuev1 . The alignment of contour lines
changes from the main diagonal toward a flatter slope c
siderably less than unity. The slope, however, does not
main uniform for all values ofv1 , a feature which become
more obvious at higher Peclet numbers and which will
discussed in the following sections. As the mixing timetm8
exceeds the correlation timetc , the contour lines tend to
become oriented parallel to the horizontal (v1) axis. This
behavior is equivalent to the conditional probability ofv2 ,
becoming independent ofv1 , so that the correlation is bein
lost. However, for the longest time shown in Fig. 6~b! (tm8
;5tc), this limit of total correlation loss is not yet quit
reached. A small positive slope remains visible for smallv1 ,
while a parallel alignment of the contour lines is main
observed for small and negativev2 . A slightly negative slope
is observed for the combinations of both largev1 and v2 .
This latter behavior may be due to the influence of the o
flow effect described in the Appendix; contour lines
P̄2(Z1 ,Z2 ;tm8 ) parallel to the secondary diagonal of consta
average velocity correspond to a negative correlation
tween large values ofv1 andv2 in PV(Z1 ,DuZ2 ,D;tm8 ).

Dependence of VEXSY propagators on the Peclet number

In Figs. 6–8, 10, and 11, we present experimental res
obtained by VEXSY along with plots of the conditiona
probabilities for a wide range of mixing times and Pec
numbers. This evolution encompasses the shortest to
longest mixing times that could be used under the exp
mental conditions. Three orders of magnitude of Peclet nu
bers are covered. Full experimental parameters for flow r
average velocity, encoding time, and correlation time
given in the figure captions.

In order to further interpret the experimental data we w
begin with providing a comparison of experimentally o
tained VEXSY functions~Fig. 8! with those obtained from
numerical simulations, under similar conditions~Fig. 9!. The
numerical procedure has been described before and has
proven to give results in good agreement with the NM
experiments for a variety of different problems, such as o
dimensional propagators for flow in porous media@49# as
well as spatially two-dimensional propagators compar
displacements in orthogonal directions@45,46#. The main de-
viation of the simulations was found in a prolonged pers
tence of the low-velocity peak and in a somewhat limit
resolution of the model matrix@45,49#, while computations
of the general statistical behavior of the flow field we
shown to be reliable.

In the work presented here, we compare experime
data and simulations under similar nondimensional con
tions, i.e., similar Peclet numbers andtm8 /tc values, although
the absolute values of flow parameters do not precisely
respond. Figure 8 presents experiments obtained with an
3-10
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NMR VISUALIZATION OF DISPLACEMENT . . . PHYSICAL REVIEW E 66, 051203 ~2002!
coding time ofD55 ms for a bead size of 100mm at a
volume flow rate of 30 ml/h, corresponding to an avera
velocity of 5.9 mm/s,tc512.5 ms, and Pe5280. The simu-
lations shown in Fig. 9 were obtained for a reconstruc
random bead packing for Pe5270. Because of a differen
choice of the self-diffusion coefficient and encoding tim
leading to a somewhat different ratio of the contribution
Brownian motion, (2D0D)1/2, to the displacement during th
encoding time,̂ v&D, the velocity distribution function is
slightly broader in the case of the simulation.

A common feature across both experiment and simula
is the gradual change from a preferential alignment of
contour lines along the main diagonal in the VEXSY p
~left-hand columns of Figs. 8 and 9! for short mixing times

FIG. 7. Two-time joint probability density of velocities

P̄2(Z1 ,Z2 ;tm) ~left-hand side!, and conditional probability
PV(Z1 ,DuZ2 ,D;tm) ~right-hand side! for water flowing through
packed beads of 100mm diameter. The parameters of the expe
ments were flow rate Q510 ml/h, average velocity ^v&
52.0 mm/s, corresponding to Pe594; the encoding time isD
512.5 ms.tc551 ms. Contour lines are in steps of 10% where
peak amplitude is normalized to unity.
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towards a roughly triangular shape astm8 increases. A com-
mon feature of both series of plots is the tendency of
alignment of the outer contour lines~representing low prob-
ability! along the secondary diagonal. It is clear that wh
some of the apparent negative correlation in the experime
data may be attributed to the inflow/outflow effect, som
must arise from dispersive fluctuations themselves, sinc
similar tendency, albeit weaker, is seen in the simulatio
which were performed without taking the finite length of th
measuring volume into account. Correspondingly, the c
tour lines in the plots of the conditional probability~right-
hand columns! become perfectly parallel to the horizont
axis, and a similar behavior is seen for the experimental d
in the lower frame, wheretm8 ;16tc .

FIG. 8. Two-time joint probability density of velocities

P̄2(Z1 ,Z2 ;tm) ~left-hand side!, and conditional probability
PV(Z1 ,DuZ2 ,D;tm) ~right-hand side! for water flowing through
packed beads of 100mm diameter. The parameters of the expe
ments were flow rate Q530 ml/h, average velocity ^v&
55.9 mm/s, corresponding to Pe5280; the encoding time isD
55 ms. tc517 ms. Contour lines are in steps of 10% where t
peak amplitude is normalized to unity.
3-11



lf-
w
o

e

r,
at
n
d

d
v

d
e
ee

e,
ree
he
e

pe of
e
is

lots
is-

n is
ich
of

he
-
e,

e

ct
fast-
the

at
of
ter-

nt
4

clet
ge
a

he
to

es
er
nter

and
clet
es
trast
n-
-
le

rib-
o-

m-
n

ent
c-

ately
the

-

KHRAPITCHEV, STAPF, AND CALLAGHAN PHYSICAL REVIEW E66, 051203 ~2002!
Even for the smallest Peclet number of 94~Fig. 7!, the
contributions of random motions due to Brownian se
diffusion are outweighed by the coherent motions of flo
itself. Nevertheless, for the reasons described earlier, one
serves a considerable broadening of the joint probability d
sity P̄2(Z1 ,Z2 ;tm8 ) for vanishing mixing timetm8 . As in all
other experiments, the encoding timeD for the determination
of velocities has been kept as small as possible. Howeve
order to allow the measurement of the complete propag
for the relatively slow average velocity of 2.0 mm/s, an e
coding time ofD512.5 ms had to be used. This correspon
to an rms Brownian displacement of 8mm and an average
displacement due to flow of 25mm. The contribution of ran-
dom Brownian motion is thus not negligible, and the broa
ening of the propagator is essentially determined by the
locity fluctuations duringD in the first and the secon
encoding interval. While a strong positive correlation b
tween displacements during the two intervals is clearly s

FIG. 9. As in Fig. 8, but numerical simulations for water flow
ing through a randomly generated bead pack with Pe5270.
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from the conditional probability plot on the right-hand sid
it is not aligned along the main diagonal, indicating a deg
of reduction in correlation. In the middle pair of frames, t
effective mixing timetm8 —representing the time between th
centers of each encoding interval—is equal totc . One ob-
serves a considerably broadened, rounded triangular sha
the joint probability function with a flattening towards larg
average velocities. The decay of the probability density
much less steep than in the higher Peclet number p
shown in Figs. 6, 8, and 9, i.e., the peak around small d
placements is much less pronounced. This observatio
consistent with the one-dimensional measurements in wh
we observed a more efficient mixing of quasistatic pools
fluid into the flowing medium at lower Peclet numbers. T
plot of the conditional probability shows a weakly pro
nounced positive correlation at the shortest mixing tim
while at tm8 5263 ms;5.2tc , such a correlation cannot b

discerned anymore. The shape ofP̄2(Z1 ,Z2 ;tm8 ), on the
other hand, changes imperceptibly fromtm8 552.5 ms totm8
5263 ms. Even for this long mixing time, the outflow effe
can be regarded as negligible as the displacement of the
est fluid elements is still much smaller than the size of
resonator.

Figure 10 shows the results of experiments obtained
similar mixing times, but at an even higher Peclet number
8600. The experiments have been performed on a wa
glycerol mixture with a relatively long encoding time ofD
535 ms, which, due to the smaller self-diffusion coefficie
of the fluid, corresponds to an rms displacement of only
mm compared tôv&D5137mm. The upper frames exhibit a
much stronger correlation than that seen at lower Pe
numbers, this correlation being indicated by the narrow rid
of P̄2(Z1 ,Z2 ;tm8 ) along the main diagonal, surrounded by
broader ‘‘halo’’ of the lowest contour lines representing t
fraction of fastest fluid elements. This halo continues
broaden with increasing mixing time, while the contour lin
of highest intensity, produced by the large fraction of slow
spins, take longer to change their shape. Again, the ce
frame corresponds to the situation wheretm8 ;tc5127 ms. A
direct comparison between the center frames of Figs. 7
10 reveals an important difference. For the larger Pe
number, the correlation between initial and final velociti
seems to be much more persistent. This stands in con
with the predictions of the simplified model of the Ornstei
Uhlenbeck type@see Eq.~7!# in which the decay of the ve
locity autocorrelation function would be given by a sing
characteristic timetc . The plot of Fig. 10 gives a strong
indication that this assumption is not suitable when desc
ing the details of the temporal correlations of the flow pr
cess.

The information obtained from the NMR experiments e
ploying the VEXSY scheme allows for distinction betwee
different subsets of fluid elements. For example, the differ
behaviors of the contour lines of the joint probability fun
tion P̄2(Z1 ,Z2 ;tm8 ) ~left-hand side of Fig. 10! for slow and
fast particles makes it necessary to discuss them separ
from each other. This is facilitated by taking the shape of
conditional probabilityPV(Z1 ,DuZ2 ,D;tm8 ) ~right-hand side
3-12
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of Fig. 10! into account. A sigmoidal shape can be clea
discerned in the upper two frames, an effect that is also
parent, albeit less pronounced, in various other plots
smaller Peclet numbers. The shape ofPV(Z1 ,DuZ2 ,D;tm8 )
can be separated into three regions. For small velocities
contour lines lie horizontally, i.e., the conditional probabili
of finding a particular velocity after the mixing time is inde
pendent of the value before the mixing time. This accou
for spins which reside in quasistatic pools for which flo
slowly so that their displacements are essentially domina
by the contributions of random self-diffusion. For intermed
ate velocities, a strong correlation is found. This subse
spins follows streamlines but have not yet encountered g
metrical obstacles which can lead to mechanical disper
and therefore to a change of velocities. The fastest partic
however, have traveled distances comparable to the s

FIG. 10. As in Fig. 8, but for a water-glycerol mixture flowin
through packed beads of 500mm diameter. The parameters of th
experiments were flow rateQ50.5 l/h, average velocitŷ v&
53.9 mm/s, corresponding to Pe58600; the encoding time isD
535 ms.tc5127 ms. Contour lines are in steps of 10% where
peak amplitude is normalized to unity.
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tural size of the system, in our case the bead size, and h
changed their direction and/or magnitude of velocity. F
example, the subensemble of spins possessing velocitie
10 mm/s in Fig. 10 have traveled distances of 0.36, 1.35,
2.55 mm, respectively, at the three shown mixing times,tm8 ,
which compares to the bead size of 0.5 mm.

The time it takes for an individual particle to travel
distanced obviously depends on its local velocity. The di
tribution of local flow velocities can thus be tentatively tran
lated into a distribution of individual correlation times
P(tc). It must be understood that this distribution on
serves as a means of interpretation and, like the propag
P̄1(Z,D), depends on the time scale over which the m
surements are taken. However, the two-dimensional N
technique of VEXSY provides a unique method of disti
guishing and quantifying the behavior of individual subs
of the moving fluid.

The experimental results for the highest Peclet numb
Pe586 000 ~see Fig. 11!, follow a pattern similar to that
described above. The distinction between fast and slow fl
elements becomes even more pronounced than for
58600. The halo of fast spins~outer contour lines! loses
correlation before the slow spins~inner contour lines!. This
effect is clearly observed for the two shorter mixing tim
wheretm8 !tc ~upper pair of frames! andtm8 ;tc ~central pair
of frames!. However, even for the longest mixing time (tm8
;5tc) a correlation between velocities still exists for th
slowest particles which have traveled distances smaller t
the bead size. Nonetheless, the sigmoidal shape of the
ditional probability is observed for the two shorter mixin
times.

We now investigate the importance of the Peclet num
for the loss of temporal correlations of velocities. Here w
directly compare results obtained with comparable redu
mixing times ~on the order oftm8 ;tc) for different Peclet
numbers. The results are summarized in Fig. 12. From to
bottom, the values oftm8 correspond to between 1.0 and 1
times the correlation timetc , respectively, the latter being
computed using the bead diameter as a reference length
of the system. Assuming a simple Ornstein-Uhlenbeck p
cess with a single correlation time, a similar behavior wou
be expected in each case. The changing shape of both
joint two-time probability density functionP̄2(Z1 ,Z2 ;tm8 )
and the conditional probabilityPV(Z1 ,DuZ2 ,D;tm8 ) with in-
creasing Peclet number clearly indicates that a distribution
correlation times has to be taken into account, and that
distribution P(tc) may itself depend on Pe, much like th
observed for the one-dimensional propagatorP̄1(Z,D).

On the left-hand side of Fig. 12, it becomes obvious t
the peak related to slow moving fluid elements is more p
nounced for high Peclet numbers, where the total fluid tra
port is mainly determined by a relatively small fraction
spins with a high velocity. As a consequence, the differe
between slow and fast particles becomes more pronounce
Pe increases. The conditional probability plots on the rig
hand side of Fig. 12 are more instructive. At the lowe
value, Pe594, the conditional probability exhibits little
structure, while at higher values of Pe, the sigmoidal sh

e
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of Pv(Z1 ,DuZ2 ,D;tm8 ) becomes much more prominent, a
lowing a distinction between spins of different flow prope
ties. For comparison, vertical lines in the right-hand part
Fig. 12 indicate the initial velocityv1 for which v1tm8 5d.
These lines represent particles that have traveled a dist
equal to the bead diameter over the mixing time, assum
they all kept their initial velocity. Becausetm8 5tc in all four
plots of Fig. 12, according to the definition oftc , the lines
coincide with the average velocity of all particles,^v&. The
lines also separate those fluid elements for which the in
vidual correlation time is smaller than the averagetc ~faster
elements! from those larger than the averagetc ~slower ele-
ments!. The different behavior of the two classes of flu
elements is most apparent at the highest Pe value of
3104. While the faster moving elements have experienc
velocity changes such that a correlation between the in
and final velocity is weak, corresponding to near-horizon

FIG. 11. As in Fig. 10, but with the following experimenta
parameters: flow rateQ55.0 l/h average velocitŷv&539 mm/s,
corresponding to Pe586 000; the encoding time isD53.5 ms.tc

513 ms. Contour lines are in steps of 10% where the peak am
tude is normalized to unity.
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contour lines in the plot of the conditional probability, th
slower elements tend to reside on the same streamline du
the mixing timetm8 and thus show contour lines with a pos
tive slope, representing a positive correlation betweenv1 and
v2 .

li-

FIG. 12. Two-time joint probability density of velocities

P̄2(Z1 ,Z2 ;tm) ~left-hand side!, and conditional probability
PV(Z1 ,DuZ2 ,D;tm) ~right-hand side! for water and a water-
glycerol mixture, flowing through packed beads of 100, 400, 5
and 500mm diameter, respectively. All four experiments correspo
to reduced effective mixing timestm8 /tc5(tm1D)/tc between 1.0
and 1.1. Vertical lines on the right-hand side of the figures indic
flow displacements accumulated duringtm8 5tc , which are equal to
the bead diameter. Contour lines are in steps of 10% where the
amplitude is normalized to unity.
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The differing shapes of the conditional probabilities
one progresses through increasing Pe values on the r
hand side of Fig. 12 is especially interesting. They grap
cally illustrate that the approach to asymptotic conditio
depends not just on the reduced mixing timetm8 /tc but also
on the Peclet number.

CONCLUSION

A specially designed NMR pulse sequence~VEXSY! has
been applied for the systematic investigation of the temp
correlations of fluid motion during flow processes in stru
tured media. The VEXSY technique is noninvasive and c
be applied to opaque systems. Unlike other methods,
able to encode displacements of spin-bearing molecules
peatedly and to time correlate their velocities in a statist
manner. Furthermore, this method can be used to calcu
the experimental conditional probability function relating t
displacements of molecules over separated time interval
is clear from the present study that this two-dimensio
function can be used to graphically illustrate velocity cor
lations over an effective mixing timetm8 . The degree of posi-
tive slope is a measure of correlation while horizontal co
tour lines correspond to uncorrelated displacements.

The present study allows us to draw some conclusi
regarding dispersion in random bead packs. First, it is c
that both the Peclet number and the reduced mixing t
tm8 /tc are needed to define the conditional probability. S
ond, we observe a noticeably sigmoidal character to the c
ditional probability at preasymptotic mixing times. This su
gests the existence of three ‘‘pools’’ of molecules, a sl
moving uncorrelated subensemble whose displacemen
dominated by Brownian motion, an intermediate ensem
whose velocities change little overtm8 , and a fast flowing
ensemble which loses correlations due to mechanical dis
sion. The very existence of separate ensembles ar
against the description of fluid dispersion in terms of
simple single-correlation-time Ornstein-Uhlenbeck proce
Third, we note that the approach to asymptotic dispers
depends strongly on the Peclet number, and not just on
reduced mixing time tm8 /tc . As tm8 /tc is increased,
asymptotic conditions are most rapidly achieved at low
Pe, where Brownian motion and Taylor dispersion are p
sumably most influential.

NMR is shown here to be a highly flexible technique th
can give access to a wide range of hydrodynamic conditio
A feature of the present work concerns our coverage of th
orders of magnitude of Peclet numbers up to 105, exceeding
values reported in the existing literature. We suggest that
use of the two-dimensional VEXSY method can provide
effective qualitative tool for investigating the structural
velocity fluctuations in a graphic manner. The VEXSY tec
nique can therefore provide a powerful tool for the inves
gation of flow transport problems in structured media. Mo
complex applications might be found in the fields of bi
medical research, chemical engineering, as well as oil
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water recovery, where the ability of NMR to combine velo
ity information with chemical information provides a uniqu
opportunity to study single-component and multicompon
flow in natural rocks.
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APPENDIX

The observation of flattened off-diagonal contours at h
mixing times, as apparent in Fig. 6, appears to be anomal
One of the basic assumptions of the analysis is that the
placements of all fluid elements are taken into account w
their proper weighting. The experiment, however, is p
formed in such a way that all spins contribute to the sign
which remain within the volume of the receiver coil throug
out the experiment. The coils used in these experiments
sessed a length of 15 mm for the large bead packing and
mm for the small bead packing, respectively. Assuming
rectangular sensitivity profile along the flow axis, it becom
inevitable that a certain fraction of spins will leave the res
nator during the total time of the pulse sequence, which is
the order of 2D1tm ~neglecting the length of the gradien
pulses themselves because ofd!D). Of all spins with a
given average velocityv5(v11v2)/2, a fraction (2D
1tm)v/L leaves the resonator of lengthL and does not con-
tribute to the acquired signal. It is obvious that this affe
the fastest fluid elements most, so that the distribution
velocities obtained by the VEXSY experiment becomes
ased towards a larger weighting of slow molecules. This b
is negligible as long as (2D1tm)vmax/L!1, wherevmax rep-
resents the highest particle velocity in the flow field, av
aged between both encoding intervals. However, it cont
utes to the flattening of the outermost contour lines and th
orientation along the secondary diagonal of the VEXSY pl
as the probability of leaving the resonator is equal for co
stant total displacements. It can thus be understood tha
outermost contour lines, representing a small fraction of p
ticles, give rise to a triangular pattern when their total d
placement becomes a non-negligible fraction of the reson
length. As is seen in the simulated data in Fig. 9, for cert
velocity distributions, such as the typical shape found
fluid flow through bead packs andD/tc,1 ~see Fig. 4!, a
tendency towards an approximately triangular shape of
VEXSY plot for long mixing times already appears even
the absence of outflow. The outflow effect enhances this fl
tening, which becomes obvious by comparing the exp
mentally obtained data~Fig. 8! with the simulated ones.
3-15
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@25# B. Blümich, P. T. Callaghan, R. A. Damion, S. Han, A. A

Khrapitchev, K. J. Packer, and S. Stapf, J. Magn. Reson.152,
162 ~2001!.

@26# A. A. Khrapitchev and P. T. Callaghan, J. Magn. Reson.152,
259 ~2001!.

@27# D. L. Koch and J. F. Brady, J. Fluid Mech.180, 387 ~1987!.
@28# D. L. Koch, Chem. Eng. Sci.42, 1377~1987!.
@29# J. F. Brady,Hydrodynamics of Dispersed Media, edited by J. P.

Hulin, A. M. Cazabat, E. Guyon, and F. Carmona~Elsevier,
New York, 1990!.

@30# J. Bear, Dynamics of Fluids in Porous Media~American
Elsevier, New York, 1972!.

@31# S. Whitaker, Transp. Porous Media1, 3 ~1986!.
@32# O. A. Plumb and S. Whitaker,Dynamics of Fluids in Hierar-
05120
.

.

.

n,

ts

chical Porous Media, edited by J. H. Cushman~Academic, San
Diego, 1990!.

@33# M. Quintard and S. Whitaker, Chem. Eng. Sci.48, 2537
~1993!.

@34# J. Koplik, S. Redner, and D. Wilkinson, Phys. Rev. A37, 2619
~1988!.

@35# J. Salles, J.-F. Thovert, R. Delannay, L. Prevors, J.-L. Auria
and P. M. Adler, Phys. Fluids A5, 2348~1993!.

@36# D. Coelho, J.-F. Thovert, and P. M. Adler, Phys. Rev. E55,
1959 ~1997!.

@37# C. W. Gardiner,Handbook of Stochastic Methods for Physic
Chemistry and the Natural Sciences, 2nd ed.~Springer, New
York, 1990!.

@38# E. O. Stejskal and J. E. Tanner, J. Chem. Phys.42, 288~1965!.
@39# S. Han, S. Stapf, and B. Blu¨mich, J. Magn. Reson.146, 169

~2000!.
@40# S. Stapf, S. Han, C. Heine, and B. Blu¨mich, Concepts Magn.

Reson.14, 172 ~2002!.
@41# S. Stapf, J. Magn. Reson.152, 308 ~2001!.
@42# Y. Cheng and D. G. Cory, J. Am. Chem. Soc.121, 7935

~1999!.
@43# P. T. Callaghan, S. L. Codd, and J. D. Seymour, Conce

Magn. Reson.11, 181 ~1999!.
@44# P. T. Callaghan and A. A. Khrapitchev, Magn. Reson. Imag

19, 301 ~2001!.
@45# S. Stapf, K. J. Packer, R. G. Graham, J.-F. Thovert, and P.

Adler, Phys. Rev. E58, 6202~1998!.
@46# S. Stapf, K. J. Packer, S. Be´kri, and P. M. Adler, Phys. Fluids

12, 566 ~2000!.
@47# D. Coelho, J.-F. Thovert, and P. M. Adler, Phys. Rev. E55,

1959 ~1997!.
@48# R. Lemaitre and P. M. Adler, Transp. Porous Media5, 325

~1990!.
@49# J. J. Tessier, K. J. Packer, J.-F. Thovert, and P. M. Ad

AIChE J.43, 1653~1997!.
@50# Y. E. Kutzovsky, L. E. Scriven, H. T. Davis, and B. E. Ham

mer, Phys. Fluids8, 863 ~1996!.
@51# L. Lebon, J. Leblond, and J. P. Hulin, Phys. Fluids9, 481

~1997!.
@52# L. Lebon, L. Oger, J. Leblond, J. P. Hulin, N. S. Martys, and

M. Schwartz, Phys. Fluids8, 293 ~1996!.
@53# D. L. Koch and J. F. Brady, J. Fluid Mech.154, 399 ~1985!.
@54# P. N. Sen and M. D. Hu¨rlimann, J. Chem. Phys.101, 5423

~1994!.
@55# M. H. G. Amin, S. J. Gibbs, R. J. Chorley, K. S. Richards,

A. Carpenter, and L. D. Hall, Proc. R. Soc. London, Ser.
453, 489 ~1997!.

@56# J. D. Seymour and P. T. Callaghan, AIChE J.43, 2096~1997!.
@57# R. Maier, D. M. Kroll, H. T. Davis, and R. Bernard, Phys

Fluids 10, 60 ~1998!.
@58# R. S. Maier, D. M. Kroll, R. S. Bernard, S. E. Howington, J.

Perters, and H. T. Davis, Phys. Fluids12, 2065~2000!.
@59# A. J. Sederman, M. L. Johns, P. Alexander, and L. F. Gladd

Magn. Reson. Imaging16, 497 ~1998!.
3-16


