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NMR visualization of displacement correlations for flow in porous media

A. A. Khrapitchev! S. Stapf and P. T. Callaghdr
school of Chemical and Physical Sciences, Victoria University, P.O. Box 600, Wellington, New Zealand
2Lehrstuhl fu Makromolekulare Chemie, ITMC, RWTH Aachen, Worringerweg 1, D-52074 Aachen, Germany
(Received 1 February 2002; revised manuscript received 12 July 2002; published 20 November 2002

The temporal correlations of velocities for both water and a water-glycerol mixture flowing through a
random packings of monodisperse spherical particles have been investigated using two-dimensional nuclear
magnetic resonance methods. By combining various flow rates, fluid viscosities, and bead sizes, a wide range
of flow parameters has been covered, the dimensionless Peclet number ranging from 100 to 100 000. The
velocity exchange spectroscofyEXSY) technique has been employed to measure the correlation between
velocities during two intervals separated from each other by a mixing tjmeThis time is made both large
and small compared with the time constant, required for a fluid element possessing the average flow
velocity to cover a distance equal to the characteristic size in the system, the bead diameter. The two-
dimensional conditional probability of displacement resulting from the VEXSY method reveals the existence
of different “subensembles” of molecules, including a slow moving pool whose displacement is dominated by
Brownian motion, an intermediate ensemble whose velocities change little over the mixing time, and a fast
flowing ensemble which loses correlation due to mechanical dispersion. We find that that the approach to
asymptotic dispersion, as / r,,, increases, depends strongly on the Peclet number, the deviation of the velocity
autocorrelation function from a monoexponential Ornstein-Uhlenbeck process becoming more pronounced
with increasing Peclet number.
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INTRODUCTION terest, such as the signal-to-noise ratio, and the minimum
period of time over which flow displacements may be ob-
The physics of fluid dispersion in porous media providesserved. Furthermore, where overall ensemble properties of
an interesting example of processes involving both cohererthe flow field are sought, the need for spatial localization is
and stochastic dynamics in which a crossover between bebviated. Thus, the use of NMR imaging is not always nec-
haviors is marked by characteristic time and length scalesssary or optimal, given the specific fluid parameters being
These physical phenomena are important in understandingsought.
range of natural and industrial processes, such as perfusion in A number of NMR methods focus particularly on tempo-
biological tissue, transport in geological medila-3], two-  ral characteristics of the velocity field. These include double-
phase flow in oil recovery4,5], molecular separation using pulsed gradient spin echo NMR in which the velocity auto-
chromatographic method6—8], and the behavior of packed correlation function is measured directly over times ranging
bed reactor$9,10]. Nuclear magnetic resonan@dMR) has  from milliseconds to secondgl9,20, frequency domain
the considerable advantage of being a noninvasive methatiodulated gradient NMR in which the Fourier transform of
providing chemical selectivity and a large spectrum of con-the velocity autocorrelation function is measured in the fre-
trasting parameters. For many years, NMR pulsed-field graguency range of 10 Hz to 10 kH21,22, and velocity ex-
dient (PFQ techniques have been a powerful tool for thechange spectroscopf¢EXSY [23] and its closely related
investigation of transport processes. Recently, it has beetechnique, SERPENT24,25) in which temporal correla-
shown that NMR methods are particularly effective in study-tions in the velocity field are obtained as a two-dimensional
ing dispersion, especially because the technique allows map, the time variable being the so-called “exchange time”
well-defined displacement propagator to be measuredver which velocity variations are compared, and whose val-
[11,12. Furthermore, because NMR relies on a time se-ues, like that of double pulsed gradient spin echo NMR,
qguence of radio-frequency and magnetic field gradient enrange from a few milliseconds to seconds. It has been shown
coding pulses, it is possible to design sequences that perntitat in the VEXSY experiment, special NMR pulse se-
the study of the time dependence of displacements. Given guences are necessary if the method is to work well over a
judicious choice of pore dimensions and flow rates, thesavide range of exchange tim¢&6]. In this paper we apply
time dependencies can encompass the characteristic time feglocity exchange spectroscopy to a study of dispersive flow
the fluid to move across one pore. When combined withn a model porous medium of randomly packed spheres, and
spatial localization techniques, NMR imaging allows flow under a wide range of Peclet numbers, bead diameters, and
visualization[13—18. However, imaging methods generally exchange times. We compare the results of our experiments
require a trade-off against other important parameters of inwith theoretical predictions of flow through a similar system
with corresponding fluid motion parameters obtained by
computer simulations.
*Corresponding author. FAX:#64-4-4635237. Email address: This paper serves three purposes. First we seek to dem-
paul.callaghan@vuw.ac.nz onstrate the potential for the NMR VEXSY experiment to
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reveal the temporal character of the complex velocity distri-anomalous dispersion due to heterogeneity of the porous me-
bution associated with fluid dispersion. In doing so we shaldium requires a nonlocal formulation in which the nonlocal
indicate the limitations of the method as well as its particulardispersion tensor is dependent on time interval and displace-
strengths. Second, we will show how VEXSY can be used tanent[27,28, and given by

obtain the two-dimensional conditional probability for dis-

placements over two separated time intervals. Finally, we ~ D*(r—r’,t=t")=(u(r,t)P(r,t[r" t)u(r’',t")), (3

will use the method to examine flow behavior in a well-
defined system and to investigate the rate of approach
asymptotic behavior.

t\ghereP(r,t|r’,t’) is a transition probability of a tracer from
ratttor’ att’ and is governed by the microscale advection-

The conditional probability plots that we show here ex-g!guz'r(;nor??ggggp.stog?;:e?jo]lp;r:]nt;gen?rﬁggjarr‘f;gebloqs_l
hibit complex structure. While we are unable to provide a ISpersi : ! i

. > S
detailed quantitative explanation, we find similar structure in€9rating over’ andt’ in Eq. (3). Its trace reproduces the
local dispersion coefficient.

numerical simulations performed on a similar theoretical .
In our NMR measurements, we will generally be con-

structure under similar conditions. We are able to draw quali—Cerned with diagonal elemente of the dispersion tensor in
tative conclusions from our study. In particular, we shall 9 P

show that there exists more than one characteristic time fo\fyhlc.h relevant (.:onjponents' of ve.Iocn.y are determined by.the
plied magnetic field gradient direction in a pulsed gradient

the transition to asymptotic conditions and that these time&P! .
are closely related to details of the steady state velocity specP" echo NMR experiment.

trum. A crucial parameter in defining the temporal structure of

the velocity field is the correlation time, corresponding to
the duration of flow around a characteristic length scale. For
a medium with pore size or pore spacing given by sizthe
In the theory of dispersion, it is customary to define thecorrelation time may be written as
fluctuation in the Lagrangian velocity field(t) =v(t)—V,

DISPERSION IN POROUS MEDIA

wherev is the local instantaneous velocity awds an aver- Tczi_ (%)
aged velocity defined by/=!"_ (v), where the ensemble (v)

average( ), is taken over the distribution of velocity fields

[27,28 localized in space. Notice that the long-time limit is
taken with respect to the correlation time of the velocity
fluctuations[29]. The asymptotic dispersion tensor is then
described by 19]

In this work we shall describe flow in a packed bed of mono-
disperse spherical beads, for which we shall tak® be
given by the bead diameter. Note that the timds not the
only characteristic time for porous media flow. A longer time
is defined by the time to flow over the larger length scale
t associated with the so-called representative elementary vol-
D* =lim SJ (u(7)u(0))dr, (1) ume (REV) [30—-37. The REV is the smallest volume con-
toee J0O taining all morphological features which exist in the porous
. T . ) medium with their global statistical weighting; its size is on
whereS(A) =z (A+A7). (u(t)u(0)) is the velocity autocor-  he order of the longest correlation length, which, in our

relation function. o , _ case, is determined by the packing inhomogeneity. Further-
We will be concerned in this paper with flow in a porous e - given the wide distribution of velocities present in

medium contained within a cylindrical tube of constant CroSSyorous media flow, the notion of a unique correlation time,
section. We denote the componentvailong the direction of  \hatever the length scale and mean flow rate, is misleading,
mean flow asv and note that for a porous mediuf@) 504 we shall later generalize it by formally introducing a
= (Ve P, Where<vmb_95 is the mean velocity deduced from gistribution of correlation timesP(7,)
the volume flow rate in the absence of the porous medium - Apother time that is important to an understanding of the
and ¢ is the porosity of the structure. _ process of dispersion is that required to migrate the charac-
Equation (1) describes the *asymptotic” or long time tgyistic distance by Brownian motion alone. The definition of
scale “steady state” dispersion. The meaning of the 10ngyy, characteristic times leads one to a dimensionless number
time limit is thatt must exceed the correlation time of the {nat characterizes the flow dynamics, the Peclet number Pe.

velocity fluctuations. Note that the trace of this tensor deq, 5 porous medium Pe expresses the ratio of the time taken
scribes a scalar dispersion coefficient which is simply relateqy gitfuse across a pore to the time taken to flow across a

to the mean-squared displacements via pore, and is given by
1 do?(t) I(
) v)
Tr(D*) tlm > T dt 2 Pe= Dy ®)

where a2(t) ={[r(t)—(r(t))]%) is the positional variance. whereD is the molecular self-diffusion coefficient. In the
Equation (2) provides an alternative definition of the case of bead packs it is usual pract[@3,34 to take the
asymptotic dispersion. characteristic dimensioh as being given by the effective
At measurement times in the preasymptotic regime, thepore diameter, defined dy= ¢d,/(1— ¢). We will assume
dispersive behavior is considerably more complex. Herehis definition of the Peclet number throughout this paper.
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107 o r-rrmm— Ty distribution of correlation times, and in particular the longer
. ; g ;ﬁzﬂfvm A8 81 time associated with the larger length scale of the represen-
10 f A Carberry & Bretton E tative elementary volume.
10° _ ©  Edwards & Richardson _-
E 0 paceeletal VELOCITY EXCHANGE SPECTROSCOPY
4 L . -
~ 10 f @ Seymourand Cellaghan The elucidation by means of VEXSY, of correlations be-
o= 1000 3 tween particle velocities at two different times separated by a
Q E ] mixing time 7,,, is based on a double encoding of displace-
100 ¢ E ments. These encoding steps, in turn, are each brought about
i ] by the application of a pair of magnetic field gradient pulses
10 E E . . . . .
E of identical magnitude but alternating sign. These puldes
1k N noted PFG are separated by a timewhich we shall refer to
] as the velocity encoding time.
U The magnetic field experienced by the nuclear spins in the
0.001 0.1 10 1000 10° 107 sample can be decomposed into a homogeneous contribution

Pe By=(0,0B;) and a spatially constant field gradiemt
=(dB,/dx,dB,13y,dB,19Z).

Consequentially, the Larmor precession frequency of a
spin species of gyromagnetic ratjois given by

FIG. 1. Literature data for nondimensionalized longitudinal
asymptotic dispersion coefficients versus Peclet number.

The mechanisms that cause dispersion are often discussed
in terms of three principal processes. Mechanical dispersion o(r)=—y(|Bg|+g-r1) (€]
is due to stochastic variations in velocity induced by advec-
tion along tortuous paths and flow bifurcations and scales aand thus depends linearly on the position of the spins along
the Peclet number Pe. Diffusiv@aylor) dispersion arises the direction of the applied gradiemt If the gradient is
from molecular diffusion across streamlines and scales aapplied in the shape of a short, rectangular pulse of duration
P¢&. Holdup dispersion arises from the presence of dead end, the difference inw(r) becomes effective only during
pores, and scales as Pe InB2—35. and leads to the accumulation of a phase shift

In the asymptotic regime, where the observation time
greatly exceeds the longest correlation tirBé, is homoge-
neous(spatially independent of length scales exceeding the
REV) and stationaryobservation time independenthe di-

mensionless asymptotic dispersid®/D, has been ob- for the spini being located at;. If a second pulsed-field
served to follow a universal curve as sﬁown in Fig. 1. Forgradlent of opposite effective amplitude is applied a time

Pe<1, the microscopic Brownian motion domina®$. For - (.20 B SRE B0E RUCe SO B EERE . and
Pe>1 an approximate power law behavi@; /Dy~ P¢', is '

observed witha~1.2 for flow in packings of spherical par- the total shift for spiri will be
ticles (this is also the result of numerical simulatiof86]),

¢i=0w(r;)=—y(|Bo|+g-1}) 9

gradually reducing with increasing Pe, indicating superposed di=7vy69-[ri(A)—r(0)]=vy809-[R;(A)], (10
dispersive mechanisms with mechanical dispersion dominat-
ing at the highest Pe. where R;(A)=r;(A)—r;(0) indicates the displacement for

In attempting to describe the spatially averaged preasparticlei during the encoding tim@. The reduced total sig-
ymptotic dispersion, we shall adopt a phenomenological apral amplitude for the ensemble of spins in the sanjpte-
proach by assuming a simple expression for the correlatiomalized to the signal intensity in the absence of gradients
function(u(t)u(0)) such as the Ornstein-Uhlenbeck processS(0)] is obtained by summation over all spins, equivalent to
[37], which takes the exponential, stationary Gaussiarihe following integral:

Markoff form

(U u(0))=(u®yexp —t/ 7). (6) E(q)=S(q)/S(0)=fEl(R,A)exr[iZWq-R(A)]dR,

Defining the NMR-measured dispersion coefficient at finite 1D
observation time in terms of an appropriate time integral of
the diffusion spectrum, this particular correlation function
yields

where the wave vectay is defined agj=(27) 1yég. It is
the equivalent to the wave number in scattering experiments
and has the dimension of reciprocal length.

D* () =(ud) 7e{1+ (rc/)[exp( —t/T)— 1]},  (7) The average propagatén(R,A) is given by

where (u?) 7. is the asymptotic valu®*. This simple ex- = B
pression neglects possibilities of dispersion associated with a P1i(R.A)= | p(ro)P(rolry,A)dr, (12
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a) 90° 90"  90° — )
H 8 H H dg E(Q):f J P2(R1,A Rz, A ) expli2mqy- Ry)
= | I = =
= =] X exp(i27d,- Ry)dR,dR,. (13)
It is important to note thad); andg, may be varied indepen-
o0 180° 180° 180° dently or in unison. The former experimeMEXSY [23)) is
b) , , inherently two-dimensional and reveals the two-dimensional

distribution functionP,(R;,A;R,,A; 7). The latter experi-
ment [double pulsed gradient spin ech®GSE NMR
[19,2Q] is inherently one-dimensional and reveals either the
probability distribution of sum displacementancompen-
sated caseor the probability distribution of difference dis-
placementdcompensated caseThese one-dimensional ex-
periments have been the subject of other studies

il
IE

Tz
I:
15

C) 90" 90° 90° 90° 90° 90" 90

8 S Sg'H Hsg' 19,20,43,4%4 In this paper we focus on the use of two-
é H Hé { g g ac [d ’ ' H ' ?LVEXSY p p
E ) E E Imensiona > T. . ) . . )
A . A The two-dimensional distribution function

Ez(Rl,A;RZ,A;rm) represents the two-time probability
FIG. 2. () Schematic rf and gradient pulses sequence for alensity of findi_ng C_Jisplacement%l i_n the first andR; in the
simple PGSTE NMR experiment in which the gradient pulse aresseécond encoding interval of duratidg separated by a mix-
89 is stepped and storage is used for the encoding perigh) ing time 7. If ql_and g, are varied independently of each
Schematic rf and .gradie_nt pu_lses sequence for a general doublgther, the functiorP,(R;,A;R,,A; 7,,) is obtained from the
PGSE NMR experiment in which the gradient pulse arégand  signal E(q) after a double Fourier transformation with re-

89’ are stepped simultaneously in 1D experiments or independentl = . .
in the 2D version(c) The same as fofb), butz storage is used for igect tog; anddy. P2(Rq,A;Rz,A;7n) can be decomposed

both the encoding and mixing periods.

wherep(r,) is the probability density for starting positions, Pa(R1, AR, Ai7im) = Pl(Rl’A)PV(Rl’A|R2’A;Tm)(’14)

while P(r|ry,A) is the conditional probability for displace-

ments fromrg to r, in time A [11,12]. The average propaga- Whereﬁl(Rl,A) is the propagator during the first interval

tor P1(R,A) is obtained directly from Fourier transformation (which must be identical to the propagator in the second
of the signal functiorE(q) with respect tog. It should be  interval because of the time-invariance conditiomnd
noted that Eq(11) and all following Fourier relations are Pu(R1,A|R,,A; 7y is the conditional probability that if a
strictly applicable only if the duration of the gradient pulse is displacement byr; occurs during the first interval, then a
much smaller than the encoding timé<A) and if velocity  displacemenR, will occur during the third time interval of
fluctuations durings remain negligible. equal duration to the first, delayed by a mixing timg. This

We note further that because the experiment is characteparticular nomenclature has been chosen to emphasize that
ized by a simultaneous variation of two opposing gradientp,, describes the conditional probability betweeisplace-
pulses, information about the initial and final position be-mentsin the VEXSY case, as comparedRgr,|r,,t), which
comes lost and Only the distribution of diSpIacementS is re're|atespositionsat times separated hyThe Subscript\/ is
tained. Hence, neithgs(ro) nor the conditional probability ysed because displacement and velocity are simply related
for positions, P(ro|ry,A), is accessible. However, the ex- via the encoding timé. For convenience, we will abbreviate
Gimensional way with gradients being varied independenti"® 1INCHoNP2(R1 &:Ry. &1 ) aSPa(Ry Ry ). where
of each other, avoiding these restrictions at the cost of mxf;lﬁ”lg dt\e,;/rgtti)r?tgr?;;tgzcdr:sg:cagﬁgz(ﬁ;lg, Ezrsﬁem;;zﬂre%d

creased experimental tin{éQ]. . discussion of the formalism involved in the VEXSY experi-
The methods of measuring displacements by a PFG Paent can be found in Ref25]

can be extended towards a multiple encoding of displace-
ments by repeated application of PFG pairs, each of them. . — . _
adding a further phase shift to the individual spin, which is |m_en5|onal propagatd?l(R,A), Eq.(14)_ |_nvolves no inte-
proportional to its motion during the different encoding in- gration, and, in consequence, the con@mnal probability can
tervals[40—42. In particular, a twofold encoding, following be obtained directly from a division dP(Ry,R;7y) by

the scheme shown in Figs(l2 and Zc), measures displace- P;(R;,A). It will be shown in the Results section that a plot
ments of particles being accumulated during the &ireithe  of this conditional probability provides considerable insight
second encoding interval, both of which have been chosen asto the correlation between velocities and can aid in the
having the same duratiah for symmetry reasons. The total visualization of the relationships between initial and final
signal amplitude can now be written as velocity distributions.

Note that unlike Eg.(12), which defines the one-
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It should be mentioned that, while the presentation of thenumber of ways. For the purposes of the present argument
results either as displacements (gra scaling with the en- we shall find it convenient to do it in terms of the length
coding time A) as velocities is formally equivalent, some scaleDyA/d as
care has to be taken regarding the interpretation of the latter.

If particle velocities fluctuate during, either by contribu- Lfiow= Ziowd/ DA (15
tions from random self-diffusion or dispersion due to the
flow process itself, then the VEXSY experiment compares ~Pe (16)

velocities that are already averaged over a finite time scalel.
The consequences of such averaging are discussed in R
[40]. For the purposes of the present work, the encodin
times A have been chosen as short as practically possible.

e dispersive(incoherent displacements are given by

D*(A)A]Y?, whereD* (A) is the general time dependent
ispersion(which at low Peclet number limit corresponds to
molecular self-diffusion aloneAgain, expressing the nondi-
mensional dispersive displacement in terms of the length
DISPERSIVE LENGTH AND TIME SCALES RELEVANT scaleDyA/d, we find

TO THE NMR METHOD
Laisp=[2D* (A)A]VZd/D,A. 17
In a two-dimensional exchange experiment, parameters
measured at two different times separated by an exch@nge We now evaluat®* (A). In doing so we choose to represent
mixing) time are plotted in a two-dimensional graph. Diag- the universal asymptotic curve of Fig. 1 found from experi-
onal intensity in such a graph represents spins whose pararments on random bead packs by the relation
eters have remained unchanged over the mixing time, while .
off-diagonal intensity represents spins whose parameters D* () ~Do+Dof (P8, (18
have altered. It is of interest in the present context to under- C . .
stand how some simple limiting cases apply in the VEXSYWheref(Pe) is dimensionless quantity on the order of.Pe

. . . ; . ming for convenience the exponential form for th r-
experiment. In particular, we will consider the cwcumstances’a‘Ssu g for convenience the exponential form for the co

under which a purely diagonal spectrum might be obtainedr.EIation function, we can thus write the time dependent dis-

In principle, we can always achieve this by setting the mix-PErsion as

ing time.t(') Zero. H'owe\'/er, as discu;sed above, 'Fhere does D*(A)~Do+ Dof (P 1+ (7o /A) [ exp(— Al 1) — 1]}

exist a finite encoding tim@ for the displacement in each

interval. The limiting case of a diagonal spectrum requires

not only 7,< 7. but alsoA<7.. Here we discuss the feasi- Figure 3 compares the dimensionless flow displacement, dis-

bility of achieving such a limit. persive displacement, and ratiQ/A as a function of Pe.
Consider first the case of Brownian motion in the absence&urves for two representative examples of diffusion coeffi-
of flow. The Brownian correlation timéhe molecular colli- cient and bead size relevant to our work are shown. The

sion time is much shorter than any encoding timeacces- coherent and asymptotic regimes are indicated where the ver-
sible by NMR, the latter being on the order of or greater thartical line represents thA~ 7, crossover at Ped?/DyA. In

a few milliseconds. Thus the VEXSY spectrum compareghe “coherent” regime wherel <7, we may evaluate Eq.
two completely uncorrelated displacements and consists afl9) to second order to find

the simple product of one-dimensional displacement distri-

butions, a two-dimensional Gaussian. By contrast, consider D*(A)~Do[1+f(Pe(A/27)]. (20

the case of flow in a pipe involving a fluid. Here the molecu-

lar collision time remains as a fast correlation time but it is©Ven 7c=
possible to imagine an experiment in which the displace-f'n

ments due to flow greatly exceed those due to Brownian

motion. Now, however, molecules diffusing across stream-

lines leads tdTaylor) dispersion, for which the characteristic \yjithin the range of Peclet numbers used in this stugly,
correlation timer is the time to diffuse across the pipe, ~ 1 Consequently the stochastidispersivé displacements
a?/Dy, wherea is the pipe diameter anid, is the molecular  ayays exceed the coherefibow) displacements in the re-
self-diffusion coefficient. This; is on the order of hours for  4ime where coherent flow exists/A>1), irrespective of
flowing water in capillaries of a few millimeters in diameter. (e parameterd, Dy, or A. For this reason a strongly diag-
Itis therefore possible to perform an experiment in which they 51 VEXSY plot is not observable in the case of porous

mixing time is much less than, and for which the stream-  medium dispersion for the range of Peclet numbers used here
line displacementsA greatly exceed the Brownian displace- (pe<1(F).

ments (D,A)Y2 Thus, a diagonal VEXSY plot is possible.
In porous media a much more subtle behavior applies. Let
us once again allow that the mixing time is set to zero and
that the condition for observing purely coherent flow is gov-  The experiments were performed on fluid passing through
erned by the requiremert<< 7., where nowr.=d/{v). In  a porous medium comprising randomly packed spherical
this limit we shall refer to the displacements)A due to  beads. In separate experiments, three different sizes of beads
flow asZg,,, . This quantity can be made dimensionless in awere used, the respective diameters being 100, 400, and 500

d?/PeDg and combining Eqs(17) and(20), we

Laisr=[2(7c/A)Pet Pert1]12 (22

EXPERIMENTAL AND COMPUTATIONAL METHODS

051203-5



KHRAPITCHEYV, STAPF, AND CALLAGHAN PHYSICAL REVIEW E66, 051203 (2002

a) 6 larly stirred to avoid trapping of air bubbles. Finally the con-

' ) ' ' ' ' tainers were connected to a purtharmacia 500, Pharma-
cia Biotech or BVP-Z, Ismateavith a 2-mm-inner-diameter
Teflon tube. To avoid pulsations of the liquid column, which
can be introduced by the pump mechanism, a special gas
reservoir was installed on the inlet part of the tube. This
reservoir, which acted as a pressure buffer, was kept under

—_
[=3
IS

~

dispersive displacement
[ Caiff

4
=

o |
28 I
§§ flow displacement i nitrogen atmosphere to prevent dissolution of oxygen into
£ Gilow i the liquids.
e i Two different liquids were investigated, bidistilled water
4 «ﬁ:&‘:ﬁi"‘ and a 70 wt. % solution of glycerol. These two liquids were
107 d=o1 mm ! chosen to have self-diffusion coefficieg differing by one
| D72 Ioms ! _ . . order of magnitude,=2.1x10° m?/s for water and 2.3
Pom 0" 100 107 100 10°  10° 10 X 10 1°m?/s for glycerol solution at room temperature
b) A te=1 Pe The liquids were pumped with various flow rates between 10
6 mi/h up to 10 I/h, corresponding to interstitial velocities
10 ranging from 2 mm/s upto 20 mm/s for the 108 bead
o pack(small samplgand from 4 mm/s up to 80 mm/s for the

400- and 500=m packs(large samplg

The NMR experiments were performed on an AMX 300-
MHz Bruker spectrometer equipped with a vertical wide bore
7-T magnet. Two different gradient systems were used for

-dispersive displacement I
|
|
|
|

< coherent the small and the large samples. For the larger sample a
|
I
|
|
|
|
|
|
|
|

Cdigr

¢
=

flow displacement
2 Cflow

dimensionless
displacement

reome commercial Bruker gradient system with a maximum gradi-
ent strength of 1.6 T/m was employed. Experiments for the
sample containing the smallest beads were performed with a

107 d=05mm homemade gradient system with 8 T/m gradient strength

| P 2x0tms available.
0500 10T 100 10 10t 10t 10° One-dimensional pulsed gradient stimulated-e¢RG-
A te=1 Pe STE) experiments were performed with the pulse sequence

shown in Fig. 2a). In order to allow for a wider range of

FIG. 3. Nondimensionalized displacements arising from flowencoding times\, the stimulated-echo method was used. In
and from dispersion versus Peclet number. Two examples arghis method the magnetization is stored alongzlarection
shown for bead sizes anq molecular diffusion coefficients used "Eparallel to the main magnetic field componebétween the
t[hIS work. To ob_se_rve_adlagonal VEXSY plot, complete coherencesecond and third 90° pulses, where it is not subject to
is required. This implies that botA and that steady state flow gephasing, and signal loss occurs due to longitudinal relax-
displacements exceed the stochastic dispersive displacements. Thgq, ajone. The duration of the gradient pulsgsyas typi-
figure |nd|(_:ate§ that this condition is impossible to fulfill at Pe val- cally 0.25 ms. For the two-dimensional VEXSY experi-
ues used in this work. ments, the stimulated-echo version of the pulse scheme has
um. The 100- and 50@«m diameter beads were made from been used as wellsee Fig. £c)] with similar gradient dura-
polystyrene and specified by the compdBYJKE Scientific,  tion times 6 and encoding timed chosen appropriately to
Palo Alto, U.S) to be monodisperse within a tolerance of provide a complete dephasing of the signal intensity at the
2.0%. Additional experiments were performed employinghighest gradient strength.
glass beads with a diameter of (4080) um. Different In order to simulate flow through a model porous me-
containers were used for the differing bead sizes. For théium, a packing of spherical particles of identical sizes was
100-um-diameter beads, a Teflon 2-mm-inner-diameter tub&omputer generated. This pack had a porosity of 44%, con-
was used. To prevent a removal of the beads due to flow, twaisting ofN elementary cubes withc= 64, where the bead
cotton wool plugs were instated at both ends of the packingdiameter was chosen as 3@n. Both porosity and sphere
For the 400- and 50Qsm diameter beads a pdbther ether size were matched to real samples of glass bead packings for
ketone cylindrical container with an inner diameter of 10 which experiments with water flow had been performed pre-
mm and a length of 40 mm was used. In this latter arrangeviously [24,45,4G. Their properties match those of the
ment, the sample was confined between plugs made fromamples used in the experimental part of this study reason-
porous polystyrene. These plugs also acted as a diffusogbly well. To generate an adequate representation of the real
helping provide an even distribution of streamlines at theporous medium, the random sphere packing has been simu-
inlet and avoiding a holdup of fluid at the outflow. The po- lated by successive deposition of grains in a “gravitational”
rosities of the packings were determined to be 45% hyfield. TheNth grain is introduced at a random location above
weighting the sample before and after the addition of waterthe bed ofN—1 grains already deposited and is allowed to
Samples were prepared by adding a mixture of liquid andall until it reaches a local minimum of its potential energy.
beads to the liquid-filled container, the packing being regu-The matrix possessed periodic boundary conditions. A more
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detailed description of the deposition process is found in Ref.  0.020
[47].

In the following step, the three-dimensional velocity field
was computed for each position in the pore matrix. For an
incompressible Newtonian fluid at low Reynolds numbers,
flow is governed by the usual Stokes equations

Vp=uV?, V.v=0, (22

wherev, p, andu are the velocity, pressure, and viscosity of
the fluid, respectively, and= 0 on the surface of the wetted
solid. The symmetric permeability tenséronly depends on

the geometry of the system and describes the relation be-
tween the macroscopic pressure gradeptand the seepage
velocity (v):

Velocity [mmvs]

1 FIG. 4. One-dimensional propagatds(Z,A) for flow of water
(v)=——KVp. (23 in packed beads of 50@m diameter at a volume flow rate of 3.0
M I/h, corresponding to an average velocity of 24 mmiss 21 ms,
and Pe=5600. The propagators were obtained with encoding times
The numerical method used to solve these equations is OUk varied as indicated, employing the double-PGSE pulse sequence
lined in Ref.[48]. It assumes low Reynolds numbers which shown in Fig. 2a).

are guaranteed by the conditions employed in this study: the

flow field was computed for average velocities of 2.35 andenough that the influence of microscopic Brownian motion is
4.7 mm/s, respectively, corresponding to=Re7 and 1.4. minimized. To ensure that the displacement due to flow
More important, however, is the relative weight of convec-dominates the rms displacement due to Brownian motion, we
tive and diffusive displacements to the total particle motion,require

which is expressed by the dimensionless Peclet nuifdser -

Eq. (5)]. It was shown 35] that these simulations were reli- — 0

able for Peclet numbers smaller than 1000. In the case given (v)A>V2DoA or A> W (24)
above, one computes P70 and 540.

In the final step, 100 000 particles were distributed evenlyFor the smallest average velocities used in this study, 3
in the pore space and were allowed to follow the flow linesmm/s, this condition puts a lower limit o1 ms for the
and undergo random self-diffusion jumps, where wall colli-encoding timeA. Higher velocities allow still smaller encod-
sions were taken into account by accumulating individualing times if we are to meet this condition. On the other hand,
time lags to each particle, which were then recovered athe maximum gradient strength available makegalues of
regular intervals. The displacemerisparallel to the main less than 1 ms unfeasible, so that the above condition for the
flow direction were saved periodically and served for thelower limit of A is fulfilled under all circumstances reported
visualization of the two-dimension&RD) probability func-  here.
tions and the computation of the correlation coefficients. Second, we wish to maka short enough that the flow

The simulation methods have been discussed in greateelocity is approximately constant over the encoding time.
detail and compared to experimentally obtained propagator$his allows us to use thexchange timédetween the two
in [45,49. A similar set of simulated data for flow through encodingsy,,, to investigate velocity fluctuations. This con-
bead packings, in particular, addressing the topic of spatialition implies that the encoding time be much less than the
correlations between displacements in orthogonal directionsorrelation timeA<<7..
at identical times, was already presented in previous work In order to demonstrate the influence of differandn the
[24,45. The results from numerical simulations, which are shape of the velocity distribution function, we present as an
presented in this work with the purpose of supplying a com-example in Fig 4 a series of one-dimensional propagators

parison with experimental data, will be covered more extenp, (7 A), wherez indicates displacements along the axis of

sively in Ref.[40]. the main flow direction, being encoded by a pulsed gradient
in the same direction, whose corresponding wave number we
RESULTS AND DISCUSSION denote agy,. The propagators were obtained employing the

conventional PGSTE pulse sequence shown in R@). Eig-
ure 4 was obtained with beads of 5@0n diameter at a

In the idealized case, the VEXSY experiment compareyolume flow rate of 3.0 I/h, corresponding to an average
velocity distribution functions which were obtained at two velocity of 24 mm/s and Pe5600. The correlation time un-
different time points. In reality, the encoding takes place oveder these conditions is,=21 ms. The velocity distribution
an interval A during which a certain averaging of particle function, which is equivalent to the propagator of displace-
velocities occurs. The desired time scale is determined bynents Z=vA), shows a sharp peak at small velocities and a
two limiting conditions. First, we wish to mak@& long long tail of large velocities for the shortest encoding time of

One-dimensional propagators
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A=10 ms. This behavior has been observed beff66e-52 0020
and has been well represented by an exponentially decaying
velocity distribution function. It describes a situation where
each particle remains essentially within the same streamline
during the encoding X< ;), so that the statistics of dis-
placements of the ensemble of flowing molecules can be re-
garded as being equivalent to the true properties of the ve- 0010
locity field.

With increasing encoding time, the particles mix between
streamlines, this mixing process being dominated by the in-  99%+
fluence of mechanical dispersion. As a consequence of this
mixing, the velocity distribution function of the particles be-
comes smoothed over the interval The effect of this aver- 0.000
aging process is already visible far/7,=1.1. ForA> 7,
the distribution is approximately Gaussian and is centered at

the average interstitial velocityv)=28 mm/s. A small FIG. 5. One-dimensional propagatd?g(Z,A) for flow of water
“hump” representing “slow” spins remains even al  in packed beads of 50am diameter at a volume flow rate of 3.0
=300 ms. The origin of this hump is a small fraction of I/h, corresponding to an average velocity of 24 mmiss 21 ms,
molecules, which remains trapped in quasistatic regionand Pe=5600. The propagators were obtained with an encoding
without having mixed into the main streamlines duridg time of A=5ms employing the double-PGSE pulse sequence
This behavior is in perfect agreement with propagators reshown in Fig. 8). The mixing timer,, has been varied as indi-
ported in the literatur¢53—-55, and is reasonably well un- cated.

derstood. In the limiA — <0, the propagator is expected to be

of perfect Gaussian shape, representing the case when ea&ihgle-PGSE experiment with a twice larger encoding time
spin has sampled all velocities with an equal statistical probof A=10ms. The effective time over which velocity
ability irrespective of its starting position or initial velocity. changes are measured is denoted)y=A+ 7,,, and the
This is the asymptotic region of longitudinal dispersjd6—  reduced quantity, /7 is used as a parameter in this and the
58]. It has been shown that the intensity of the low-velocityfollowing figures.

peak as a function oA is a measure of the connectivity of  As 7/ increases, the velocities of the individual fluid ele-
the pore spac§6,52,59, and it has been observed for times ments during the first and second encoding interval become
much exceeding\ =7, for systems with low porosity and more and more uncorrelated. In the limit of infinitg,, the

connectivity[46]. _ ~ signal function can be split into a product of two individual
In order to compare the instantaneous velocity distribupropagators:

tions at two different times, it becomes obvious from the

results of Fig. 4 that the encoding timehas to be chosen as — )

short as possible, provided of course thdb)>(2DyA)Y? E(qz)ZJ f Pa(Z1,Z5; ) exfli2ma,(Z,+Z5)]dZ,dZ,
is still fulfilled.

One way to indirectly observe the change of velocities
during a given period is realized by a repeated encoding of
displacements in two identical intervalg which are sepa-
rated by a mixing timer,. This is essentially a one- so thatthe Fourier transformation B{q,) with respect ta,
dimensional realization of the VEXSY experimésee Figs. produces the autocorrelation function of the one-dimensional
2(b) and 2c)], where both gradient pairs are varied simulta-propagatorP,(Z,A).

neously. Two versions are possible, one in which the gradient This one-dimensional double-PGSE experiment is shown
pairs have the same effective amplitudgncompensated for demonstration only. It does not give direct insight into the
double PGSEand one in which the gradient pairs have thechange of velocities, neither does it allow one to investigate
opposite effective amplitudécompensated double PGBE  the behavior of particular subsets of fluid elements in suffi-
On Fourier transformation of this doubly encoded signalcient detail. By contrast, the use of the compensated double-
with respect to the wave vectay,, the former returns the PGSE experiment does reveal changes in velocity, and such
total displacement from each interva from which the av-  an approach has been employed in previous Wag20Q.
erage velocity distribution may be computed, while the latterHowever, the use of the two-dimensional VEXSY experi-
yields the difference in displacement from each interval. Fig-ment allows a more detailed analysis of the changes in the
ure 5 shows the distribution of average velocities obtainedelocity field in which specific correlations in displacements

using gradients of the same effective amplitydacompen-  petween the two encoding intervals are revealed.
sated double PGSE for a range of mixing timeg). For a

vanishing mixing time, this function is essentially unchanged
compared to the single-encoding case shown in Fig. 4. With
the chosen parameter &=5ms for the uncompensated Figure 6a) demonstrates the eVOEtion of the two-time
double-PGSE experiment, the result is equivalent to thgoint probability density of velocitiesP,(Z,,Z,; ). This

0.015 4

Velocity [mm/s]

2
f P.(Z,A)expi2mq,Z)dZ| , (25)

Characteristics of VEXSY propagators
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FIG. 6. (a) Two-time joint probability density of velocitie®,(Z,,Z,; ), for water flowing through packed beads of 500 diameter
obtained by the VEXSY experiment as shown in Figc)3The parameters of the experiments were flow fatel.0 I/h, average velocity
{v)=7.9 mm/s, corresponding g =64 ms and Pe 1900; the encoding time i8=12 ms. Velocities measured before and after the mixing
interval 7,,, are shown along the abscissa and ordinate axes, respectively. Numbers indicate velocities in mm/s. Contour lines are in steps of
10% where the peak amplitude is normalized to unily. As in Fig. §a) but with the data plotted as the conditional probability
PUZ1,A|Z5,A5 7).

plot was obtained by using the VEXSY experiment as shown For a negligible mixing time, the velocity distribution is

in Figs. 4b) and Zc) in which the amplitudes of both gradi- expected not to change between the first and the second en-
ent pairs were varied independently of each other, followingcoding interval. The plot in the upper left corner of Figa6
which the signal was subjected to a two-dimensional Fourieshows this situation for,,=13 ms. The distribution is plot-
transformation with respect t6q,,,9,,}. Here and in all ted with initial velocities along the horizontal axis, and final
following experiments, only displacements parallel to thevelocities along the vertical. Intensities along the main diag-
axial flow direction(Z) have been measured. The parameter®nal correspond to spins that have not changed their velocity
of the experiments were the flow ra@=1.0 I’h, average during 7/,, while off-diagonal intensities represent velocity
velocity (v)=7.9 mm/s, bead sizé=500um, correspond- changes. Here and in all following figures, the two-time
ing to Pe=1900. The correlation time computed for these probability density functiorP,(Z,,Z,;7.,) is plotted as con-
conditions is7.=64 ms. The mixing times used in the ex- tour lines in steps of 10% where the peak amplitude is nor-
periment cover the rangs,< 7. to 7,,> 7.. Note that in this malized to unity. The plot for the shortest mixing times is
and all subsequent plots the ordinate and abscissa axes arecimaracterized by a strong alignment along the main diagonal,
velocity rather than displacement units. Conversion betweeindicating that the majority of spins have maintained their
displacement and velocity may be simply made via the eninitial velocity or have changed it by a relatively small
coding timeA. amount. In fact, the broadening of the distribution function is
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dominated by the averaging process taking place dusing backflow and random diffusive contributions antiparallel to
becauseA> /.. As explained in the preceding section, athe main axial flow direction, remain very small.

perfectly diagonal VEXSY plot is not observable in flow  With growing mixing time, the fluid elements are allowed
through bead packs for the range of Peclet numbers used t@ sample a wider range of streamlines and the different com-
this work. The funCtiOﬂEz(Zl,Zz;Tr}) therefore does not pone.n.ts of dispersjpn lead to a loss of memory, so that the
assume the shape ofsalistribution as would be expected for conditional probability ofu, becomes gradually less depen-
a vanishing mixing time, but retains a finite broadeningdem on the initial value ;. The alignment of contour lines

which represents the highest degree of correlation obtairch@nges from the main diagonal toward a flatter slope con-
able. siderably less than unity. The slope, however, does not re-

When 7’ is increased, a further broadening of the func-mMain uniform for all values ob,, a feature which becomes
m ’

L= . . more obvious at higher Peclet numbers and which will be
tion P5(Z1,Z,;A) is observed. The probability of a change yisqsseq in the following sections. As the mixing ting
of velocities for a given fluid element grows with longet .

) , ) . exceeds the correlation time., the contour lines tend to
In the third frame,r,~ 7. and one finds a larger probability pecome oriented parallel to the horizontal) axis. This
of velocity changes. For example, the probability of finding apenhavior is equivalent to the conditional probability wf,

spin with a large velocity in the first encoding interaaida  hecoming independent of,, so that the correlation is being

small velocity in the second interval is increased as COMost. However. for the longest time shown in Fighp(r’
pared to the situation in the first frame. The loss of correla- .’ ' m

tion. h . t vet let At ' th ~57.), this limit of total correlation loss is not yet quite
ion, however, is not yet complete af,~ .. ong 7m € reached. A small positive slope remains visible for sroall

shape of the functio®,(Z,,Z;;y,) tends to become trian- while a parallel alignment of the contour lines is mainly
gular, with the outer contour lines being oriented parallel tophserved for small and negative. A slightly negative slope
the secondary diagonal in the plot. The latter effect suggestg observed for the combinations of both large andv,.
a constant probability of finding spins with equal averageThis latter behavior may be due to the influence of the out-
velocity, equivalent to a constant total displacement duringlow effect described in the Appendix; contour lines of
both |nterv_alszl+22. This requires a negative correl_atlon EZ(erZZ;Tr,n) parallel to the secondary diagonal of constant
pebieen dsplacererisy anzs o least lof hose palcles ayerage velooiy correspond o a negatie correlaon be-
words there is a tendency for a smajl to be observed along fleen large values af; andv, in 2/(21,4(2,4: 7).
with a largeZ,, and vice versa, a strange result given that
one would expect a complete loss of correlation for mixing
times much longer than the correlation time. This apparently In Figs. 6—8, 10, and 11, we present experimental results
unphysical observation could arise from inflow/outflow ef- obtained by VEXSY along with plots of the conditional
fects as discussed further in the Appendix. probabilities for a wide range of mixing times and Peclet
The interpretation of the dependence between initial ansdhumbers. This evolution encompasses the shortest to the
final velocity distributions can be facilitated by employing longest mixing times that could be used under the experi-
the conditional probability?(Z,,A|Z,,A; 7;) as defined in  mental conditions. Three orders of magnitude of Peclet num-
Eqg. (14). It is simply obtained in practice by dividing bers are covered. Full experimental parameters for flow rate,

the joint probability density function Py(Z;,Z,;7,)  &verage velocity, encoding time, and correlation time are
by the one-time propagator P;(Z,A), which is given in the figure captions. . .

) — . &= - In order to further interpret the experimental data we will
the marginal of Py(Zy,Z5;7), e, the integral pegin with providing a comparison of experimentally ob-
IPx(Z1,Z5;7)dZ,. Py(Z1,A|Z,,A;7)) is still a two-  tained VEXSY functionsgFig. 8 with those obtained from
dimensional quantity, and the plots obtained from thenumerical simulations, under similar conditioffsg. 9). The
VEXSY results of Fig. 68 are shown in Fig. @®). The  numerical procedure has been described before and has been
shape of the conditional probability describes the probabilityproven to give results in good agreement with the NMR
of finding a velocityv, in the second encoding intervgiven  experiments for a variety of different problems, such as one-
thata velocityv, was observed in the first interval. It can be dimensional propagators for flow in porous mefid] as
seen that for the shortest mixing time, a strong correlatiorwell as spatially two-dimensional propagators comparing
betweerv, anduv, exists, as expressed by the probability of displacements in orthogonal directidab,46. The main de-
finding v, being shifted towards higher velocities at increas-viation of the simulations was found in a prolonged persis-
ing v,. Throughout the function, a positive slope of aroundtence of the low-velocity peak and in a somewhat limited
unity is found, i.e., the pattern of contour lines is alignedresolution of the model matrik45,49, while computations
approximately along the main diagonal. Note that fgr  of the general statistical behavior of the flow field were
=0, the distribution ofv, remains very narrow and is cen- shown to be reliable.
tered about a small positive value, as a change of velocities In the work presented here, we compare experimental
will most likely be associated with a positiv€'down- data and simulations under similar nondimensional condi-
stream”) motion of the fluid elements. This is corroborated tions, i.e., similar Peclet numbers anf/ 7. values, although
by the one-dimensional propagators shown in Fig. 4, wherg¢he absolute values of flow parameters do not precisely cor-
negative displacements, arising from the combined effect ofespond. Figure 8 presents experiments obtained with an en-

Dependence of VEXSY propagators on the Peclet number
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Pe =9.4x10" Pe =2.8x10°

v, [mm/s]
v, [mm/s]
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T /1, =16.0
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v, [mm/s] v, [mm/s]
P, P, P, P
FIG. 7. Two-time joint probability density of velocities, FIG. 8. Two-time joint probability density of velocities,

P»(Z1,Z,;7y) (left-hand sidg and conditional probability P,(Z,,Z,;7,) (left-hand sidg and conditional probability
Py(Z,1,A|Z,,A;7,) (right-hand sidg for water flowing through Py (Z;,A|Z,,A;7,) (right-hand sidg for water flowing through
packed beads of 10@m diameter. The parameters of the experi- packed beads of 10@m diameter. The parameters of the experi-
ments were flow rate Q=10ml/h, average velocity(v) ments were flow rate Q=30ml/h, average velocity{v)

=2.0 mm/s, corresponding to P®&4; the encoding time i\ =5.9 mm/s, corresponding to P&80; the encoding time id
=12.5ms.7.=51 ms. Contour lines are in steps of 10% where the=5 ms. 7.=17 ms. Contour lines are in steps of 10% where the
peak amplitude is normalized to unity. peak amplitude is normalized to unity.

coding time ofA=5ms for a bead size of 10@m at a towards a roughly triangular shape s increases. A com-
volume flow rate of 30 ml/h, corresponding to an averagemon feature of both series of plots is the tendency of the
velocity of 5.9 mm/s,r.=12.5 ms, and Pe280. The simu- alignment of the outer contour linéeepresenting low prob-
lations shown in Fig. 9 were obtained for a reconstructedability) along the secondary diagonal. It is clear that while
random bead packing for P270. Because of a different some of the apparent negative correlation in the experimental
choice of the self-diffusion coefficient and encoding time,data may be attributed to the inflow/outflow effect, some
leading to a somewhat different ratio of the contribution of must arise from dispersive fluctuations themselves, since a
Brownian motion, (D,A)Y2 to the displacement during the similar tendency, albeit weaker, is seen in the simulations,
encoding time(v)A, the velocity distribution function is which were performed without taking the finite length of the
slightly broader in the case of the simulation. measuring volume into account. Correspondingly, the con-
A common feature across both experiment and simulatiotour lines in the plots of the conditional probabilitsight-
is the gradual change from a preferential alignment of théhand columns become perfectly parallel to the horizontal
contour lines along the main diagonal in the VEXSY plot axis, and a similar behavior is seen for the experimental data
(left-hand columns of Figs. 8 and %or short mixing times in the lower frame, where;, ~ 167 .
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_ 2 from the conditional probability plot on the right-hand side,
Pe — 27 Xl O it is not aligned along the main diagonal, indicating a degree

of reduction in correlation. In the middle pair of frames, the
effective mixing timer;,—representing the time between the
centers of each encoding interval—is equalrto One ob-
serves a considerably broadened, rounded triangular shape of
the joint probability function with a flattening towards large
average velocities. The decay of the probability density is
much less steep than in the higher Peclet number plots
shown in Figs. 6, 8, and 9, i.e., the peak around small dis-
placements is much less pronounced. This observation is
consistent with the one-dimensional measurements in which
we observed a more efficient mixing of quasistatic pools of
fluid into the flowing medium at lower Peclet numbers. The
plot of the conditional probability shows a weakly pro-
nounced positive correlation at the shortest mixing time,
while at 7;,=263 ms-5.2r;, such a correlation cannot be
discerned anymore. The shape B§(Z,,Z,;7,), on the
other hand, changes imperceptibly frorfj=52.5 ms tor;,
=263 ms. Even for this long mixing time, the outflow effect
can be regarded as negligible as the displacement of the fast-
est fluid elements is still much smaller than the size of the
resonator.

Figure 10 shows the results of experiments obtained at
similar mixing times, but at an even higher Peclet number of
8600. The experiments have been performed on a water-
glycerol mixture with a relatively long encoding time Af
=35 ms, which, due to the smaller self-diffusion coefficient
of the fluid, corresponds to an rms displacement of only 4
um compared t@v YA =137 um. The upper frames exhibit a
much stronger correlation than that seen at lower Peclet
numbers, this correlation being indicated by the narrow ridge

of 52(21,22;7-,’“) along the main diagonal, surrounded by a

v, [mm/s]

. v, [mm/s] broader “halo” of the lowest contour lines representing the
P (l) fraction of fastest fluid elements. This halo continues to
2 v broaden with increasing mixing time, while the contour lines

of highest intensity, produced by the large fraction of slower
spins, take longer to change their shape. Again, the center
frame corresponds to the situation whefe~ 7.=127 ms. A
direct comparison between the center frames of Figs. 7 and
Even for the smallest Peclet number of @g. 7), the 10 reveals an important difference. For the larger Peclet
contributions of random motions due to Brownian self- number, the correlation between initial and final velocities
diffusion are outweighed by the coherent motions of flowseems to be much more persistent. This stands in contrast
itself. Nevertheless, for the reasons described earlier, one olvith the predictions of the simplified model of the Ornstein-
serves a considerable broadening of the joint probability denUhlenbeck typdsee Eq.(7)] in which the decay of the ve-
sity P,(Z1,Z,;7) for vanishing mixing timer... As in all locity autocorrelation function would be given by a single
other experiments, the encoding timdor the determination ~characteristic timer.. The plot of Fig. 10 gives a strong
of velocities has been kept as small as possible. However, ifadication that this assumption is not suitable when describ-
order to allow the measurement of the complete propagatdPd the details of the temporal correlations of the flow pro-
for the relatively slow average velocity of 2.0 mm/s, an en-C€SS. _ _ _
coding time ofA=12.5 ms had to be used. This corresponds _The information obtained from the NMR experiments em-
to an rms Brownian displacement ofn and an average Ploying the VEXSY scheme allows for distinction between
displacement due to flow of 26m. The contribution of ran-  different subsets of fluid elements. For example, the different
dom Brownian motion is thus not negligible, and the broad-Pehaviors of the contour lines of the joint probability func-
ening of the propagator is essentially determined by the vetion P»(Z;,Z,; ;) (left-hand side of Fig. 10for slow and
locity fluctuations duringA in the first and the second fast particles makes it necessary to discuss them separately
encoding interval. While a strong positive correlation be-from each other. This is facilitated by taking the shape of the
tween displacements during the two intervals is clearly seenonditional probabilityPy(Z;,A|Z,,A; ) (right-hand side

FIG. 9. As in Fig. 8, but numerical simulations for water flow-
ing through a randomly generated bead pack with- P20.
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3 tural size of the system, in our case the bead size, and have
Pe — 86X10 changed their direction and/or magnitude of velocity. For
example, the subensemble of spins possessing velocities of
10 mm/s in Fig. 10 have traveled distances of 0.36, 1.35, and
2.55 mm, respectively, at the three shown mixing times,
which compares to the bead size of 0.5 mm.

The time it takes for an individual particle to travel a
distanced obviously depends on its local velocity. The dis-
tribution of local flow velocities can thus be tentatively trans-
lated into a distribution of individual correlation times,
P(7.). It must be understood that this distribution only
serves as a means of interpretation and, like the propagator

P.(Z,A), depends on the time scale over which the mea-
surements are taken. However, the two-dimensional NMR
technique of VEXSY provides a unique method of distin-
guishing and quantifying the behavior of individual subsets
of the moving fluid.

The experimental results for the highest Peclet number,
Pe=86 000 (see Fig. 1}, follow a pattern similar to that
described above. The distinction between fast and slow fluid
elements becomes even more pronounced than for Pe
=8600. The halo of fast spin@uter contour linesloses
correlation before the slow spirigner contour lines This
effect is clearly observed for the two shorter mixing times
wherer, < 7. (upper pair of framesand r,,~ 7. (central pair
of frameg. However, even for the longest mixing time/(
~57.) a correlation between velocities still exists for the
slowest particles which have traveled distances smaller than
the bead size. Nonetheless, the sigmoidal shape of the con-
ditional probability is observed for the two shorter mixing
times.

We now investigate the importance of the Peclet number

v, [mm/s]

v, [mm/s] for the loss of temporal correlations of velocities. Here we
F q_-) directly compare results obtained with comparable reduced
2 v mixing times (on the order ofr,,~ 7.) for different Peclet

numbers. The results are summarized in Fig. 12. From top to
FIG. 10. As in Fig. 8, but for e} water-glycerol mixture flowing bottom, the values of-{’n correspond to between 1.0 and 1.1
through packed beads of 5Qim diameter. The parameters of the times the correlation time,, respectively, the latter being
experiments were flow ratQ=051/h, average velocit(v)  computed using the bead diameter as a reference length scale
=3.9mms, corresponding to P&600; the encoding time id ot yhe system. Assuming a simple Ornstein-Uhlenbeck pro-
=35ms.7,=127 ms. Contour lines are in steps of 10% where the.o.5 \\ith 5 single correlation time, a similar behavior would
peak amplitude is normalized to unity. be expected in each case. The changing shape of both the

of Fig. 10 into account. A sigmoidal shape can be clearlyjoint two-time probability density functiorP,(Zy,2;; )
discerned in the upper two frames, an effect that is also apand the conditional probabilit(Z,,A[Z;,A; 7p,) with in-
parent, albeit less pronounced, in various other plots foereasing Peclet number clearly indicates that a distribution of
smaller Peclet numbers. The shape®f(Z;,A|Z,,A;7.) correlation times has to be taken into account, and that this
can be separated into three regions. For small velocities, thdistribution P(7;) may itself depend on Pe, much like that
contour lines lie horizontally, i.e., the conditional probability observed for the one-dimensional propagd&e(Z,A).

of finding a particular velocity after the mixing time is inde-  On the left-hand side of Fig. 12, it becomes obvious that
pendent of the value before the mixing time. This accountshe peak related to slow moving fluid elements is more pro-
for spins which reside in quasistatic pools for which flow nounced for high Peclet numbers, where the total fluid trans-
slowly so that their displacements are essentially dominategdort is mainly determined by a relatively small fraction of
by the contributions of random self-diffusion. For intermedi- spins with a high velocity. As a consequence, the difference
ate velocities, a strong correlation is found. This subset obetween slow and fast particles becomes more pronounced as
spins follows streamlines but have not yet encountered ged?e increases. The conditional probability plots on the right-
metrical obstacles which can lead to mechanical dispersiohand side of Fig. 12 are more instructive. At the lowest
and therefore to a change of velocities. The fastest particlesalue, Pe=94, the conditional probability exhibits little
however, have traveled distances comparable to the strustructure, while at higher values of Pe, the sigmoidal shape
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FIG. 11. As in Fig. 10, but with the following experimental
parameters: flow rat€=>5.0 I/h average velocitfv)=39 mm/s,

corresponding to Pe86 000; the encoding time =3.5ms. 7, 0 50 100 150 0 50 100 150
=13 ms. Contour lines are in steps of 10% where the peak ampli- v, [mm/s]
tude is normalized to unity. F q)

2 v

of P,(Z,,A|Z,,A;7}) becomes much more prominent, al-
lowing a distinction between spins of different flow proper- _ FIG. 12. Two-time joint probability density of velocities,
ties. For comparison, vertical lines in the right-hand part ofP2(Z1,Z2;7m) (left-hand sidg and conditional = probability
Fig. 12 indicate the initial velocity, for which v 7, =d.  Pu(Z1,A|Z2,A7y) (right-hand sidg for water and a water-
These lines represent particles that have traveled a distan8/cerol mixture, flowing through packed beads of 100, 400, 500,
equal to the bead diameter over the mixing time, assumin nd 500um dlamgter, rgs_pecpvely. All four experiments correspond
they all kept their initial velocity. Becausg, = 7. in all four reduced effective mixing times,/ 7= (7y+A)/7; between 1.0

. . - . and 1.1. Vertical lines on the right-hand side of the figures indicate
plqts .Of F'g.' 12, according to th? definition @_g, the lines flow displacements accumulated durifg= 7., which are equal to
‘?O'”C'de with the average Ve_loc'ty of all partlcle{;s). The_ the bead diameter. Contour lines are in steps of 10% where the peak
Imes also sepgratg thqse fluid elements for which the '”d'émplitude is normalized to unity.
vidual correlation time is smaller than the averagdfaster
elements from those larger than the average(slower ele- ) ) - N
menty. The different behavior of the two classes of fluid Contour lines in the plot of the conditional probability, the
elements is most apparent at the highest Pe value of 8gower elements tend to reside on the same streamline during
X 10%. While the faster moving elements have experiencedhe mixing timer;, and thus show contour lines with a posi-
velocity changes such that a correlation between the initialive slope, representing a positive correlation betwegand
and final velocity is weak, corresponding to near-horizontab, .
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The differing shapes of the conditional probabilities aswater recovery, where the ability of NMR to combine veloc-
one progresses through increasing Pe values on the righty information with chemical information provides a unique
hand side of Fig. 12 is especially interesting. They graphi-opportunity to study single-component and multicomponent
cally illustrate that the approach to asymptotic conditionsflow in natural rocks.
depends not just on the reduced mixing tirjd 7. but also

on the Peclet number. ACKNOWLEDGMENTS
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been applied for the systematic investigation of the temporadypport throughout the process of performing the numerical
correlations of fluid motion during flow processes in struc-simulations for the porous medium. Part of this work was

tured media. The VEXSY technique is noninvasive and canndertaken during a stimulating stay of S.S. at Victoria Uni-
be applied to opaque systems. Unlike other methods, it igersity, Wellington.

able to encode displacements of spin-bearing molecules re-
peatedly and to time correlate their velocities in a statistical
manner. Furthermore, this method can be used to calculate APPENDIX

the experimental conditional probability function relating the  The observation of flattened off-diagonal contours at high
_displacements of molecules over separafced time_interv_als. Hwixing times, as apparent in Fig. 6, appears to be anomalous.
is clear from the present study that this two-dimensionalone of the basic assumptions of the analysis is that the dis-
function can be used to graphically illustrate velocity corre-pjacements of all fluid elements are taken into account with
lations over an effective miXing t|m€r’n . The degree of pOSi' their proper We|ght|ng The experiment, however, is per-
tive slope is a measure of correlation while horizontal conformed in such a way that all spins contribute to the signal,
tour lines correspond to uncorrelated displacements. which remain within the volume of the receiver coil through-
The present study allows us to draw some conclusiongut the experiment. The coils used in these experiments pos-
regarding dispersion in random bead packs. First, it is cleagessed a length of 15 mm for the large bead packing and 10
that both the Peclet number and the reduced mixing tlmenm for the small bead packing, respective|y_ Assuming a
wl 7 are needed to define the conditional probability. Secrectangular sensitivity profile along the flow axis, it becomes
ond, we observe a noticeably sigmoidal character to the corinevitable that a certain fraction of spins will leave the reso-
ditional probability at preasymptotic mixing times. This sug- nator during the total time of the pulse sequence, which is on
gests the existence of three “pools” of molecules, a slowthe order of A+ r,, (neglecting the length of the gradient
moving uncorrelated subensemble whose displacement jsulses themselves because &&A). Of all spins with a
dominated by Brownian motion, an intermediate ensemblejiven average velocityv=(v,+v,)/2, a fraction (2
whose velocities change little ovet,,, and a fast flowing  + 7 )v/L leaves the resonator of lengthand does not con-
ensemble which loses correlations due to mechanical dispetribute to the acquired signal. It is obvious that this affects
sion. The very existence of separate ensembles argugise fastest fluid elements most, so that the distribution of
against the description of fluid dispersion in terms of avelocities obtained by the VEXSY experiment becomes bi-
simple single-correlation-time Ornstein-Uhlenbeck processased towards a larger weighting of slow molecules. This bias
Third, we note that the approach to asymptotic dispersiors negligible as long as (+ 7,,) U max/L<1, Wherev ., rep-
depends strongly on the Peclet number, and not just on thesents the highest particle velocity in the flow field, aver-
reduced mixing time 7, /7.. As 7,/7. is increased, aged between both encoding intervals. However, it contrib-
asymptotic conditions are most rapidly achieved at lowestites to the flattening of the outermost contour lines and their
Pe, where Brownian motion and Taylor dispersion are preerientation along the secondary diagonal of the VEXSY plot,
sumably most influential. as the probability of leaving the resonator is equal for con-
NMR is shown here to be a highly flexible technique thatstant total displacements. It can thus be understood that the
can give access to a wide range of hydrodynamic conditionsoutermost contour lines, representing a small fraction of par-
A feature of the present work concerns our coverage of threicles, give rise to a triangular pattern when their total dis-
orders of magnitude of Peclet numbers up t3, lékceeding placement becomes a non-negligible fraction of the resonator
values reported in the existing literature. We suggest that thkength. As is seen in the simulated data in Fig. 9, for certain
use of the two-dimensional VEXSY method can provide anvelocity distributions, such as the typical shape found for
effective qualitative tool for investigating the structural of fluid flow through bead packs amtl/7,<1 (see Fig. 4, a
velocity fluctuations in a graphic manner. The VEXSY tech-tendency towards an approximately triangular shape of the
nique can therefore provide a powerful tool for the investi-VEXSY plot for long mixing times already appears even in
gation of flow transport problems in structured media. Morethe absence of outflow. The outflow effect enhances this flat-
complex applications might be found in the fields of bio-tening, which becomes obvious by comparing the experi-
medical research, chemical engineering, as well as oil anthentally obtained datéFig. 8 with the simulated ones.
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